140
Views
6
CrossRef citations to date
0
Altmetric
Articles

Modelling ion exchange kinetics in zeolyte-type materials using Maxwell-Stefan approach

, &
Pages 5333-5342 | Received 21 Aug 2012, Accepted 16 May 2013, Published online: 17 Jul 2013

References

  • P.F. Lito, J.P.S. Aniceto, C.M. Silva, Removal of anionic pollutants from waters and wastewaters and materials perspective for their selective sorption. Water Air Soil Pollut. 223 (2012) 6133–6155.
  • K. Popa, C.C. Pavel, Radioactive wastewaters purification using titanosilicates materials: State of the art and perspectives. Desalination 293 (2012) 78–86.
  • C.B. Lopes, P.F. Lito, S.P. Cardoso, E. Pereira, A.C. Duarte, C.M. Silva, Metal recovery, separation and/or concentration, in: M. Inamuddin, M. Luqman (Eds.), Chapter 11 in Ion-Exchange Technology II: Applications, Springer, London, 2012, pp. 237–322.
  • P.F. Lito, S.P. Cardoso, J.M. Loureiro, C.M. Silva, Ion exchange equlibria and kinetics, in: M. Inamuddin, M. Luqman (Eds.), Ion-Exchange Technology I: Theory, Materials and Applications, Springer, London, 2012, pp. 51–120.
  • J.P.S. Aniceto, S.P. Cardoso, T.L. Faria, P.F. Lito, C.M. Silva, Modeling ion exchange equilibrium: Analysis of exchanger phase non-ideality. Desalination 290 (2012) 43–53.
  • J.P.S. Aniceto, P.F. Lito, C.M. Silva, Modeling sorbent phase nonideality for the accurate prediction of multicomponent ion exchange equilibrium with the homogeneous mass action law. J. Chem. Eng. Data 57 (2012) 1766–1778.
  • J.P.S. Aniceto, D.L.A. Fernandes, C.M. Silva, Modeling ion exchange equilibrium of ternary systems using neural networks. Desalination 309 (2013) 267–274.
  • D.C. Shallcross, Modelling multicomponent ion exchange equilibrium behaviour, J. Ion Exch. 14 (Supp.) (2003) 5–8.
  • J.L. Provis, G.C. Lukey, D.C. Shallcross, Single-parameter model for binary ion-exchange equilibria. Ind. Eng. Chem. Res. 43 (2004) 7870–7879.
  • J.L. Provis, G.C. Lukey, D.C. Shallcross, Modeling multicomponent ion exchange: Application of the single-parameter binary system model. Ind. Eng. Chem. Res. 44 (2005) 2250–2257.
  • S. Melis, G. Cao, M. Morbidelli, A new model for the simulation of ion exchange equilibria. Ind. Eng. Chem. Res. 34 (1995) 3916–3924.
  • A.L. Myers, S. Byington, Thermodynamics of ion exchange: Prediction of multicomponent equilibria from binary data. in: A.E. Rodrigues (Ed.) Ion Exchange: Science and Technology. Martinus Nijhoff, Dordrecht, 1986, pp. 119–145.
  • F. Helfferich, Ion Exchange. Dover, New York, 1995.
  • G. Kraaijeveld, J.A. Wesselingh, The kinetics of film-diffusion-limited ion-exchange. Chem. Eng. Sci. 48 (1993) 467–473.
  • S. Edebali, E. Pehlivan, Evaluation of Amberlite IRA96 and Dowex 1 × 8 ion-exchange resins for the removal of Cr(VI) from aqueous solution. Chem. Eng. J. 161 (2010) 161–166.
  • Y.S. Ho, G. McKay, The sorption of lead(II) ions on peat. Water Res. 33 (1999) 578–584.
  • H. Faghihian, M. Kabiri-Tadi, Removal of zirconium from aqueous solution by modified clinoptilolite. J. Hazard. Mater. 178 (2010) 66–73.
  • R. Taylor, R. Krishna, Multicomponent Mass Transfer. John Wiley, New York, 1993.
  • G.E. Boyd, A.W. Adamson, L.S. Myers, The exchange adsorption of ions from aqueous solutions by organic zeolites. 2. Kinetics, J. Am. Chem. Soc. 69 (1947) 2836–2848.
  • J.C.R. Turner, Nernst-planck or no. in: L. Liberty, J.R. Miller (Eds.) Fundamentals and Applications of Ion Exchange. Martinus Nijhoff, Leiden, 1985.
  • E.E. Graham, J.S. Dranoff, Application of the Stefan-Maxwell equations to diffusion in ion-exchangers. 1. Theory. Ind. Eng. Chem. Fundam. 21 (1982) 360–365.
  • E.E. Graham, J.S. Dranoff, Application of the Stefan-Maxwell equations to diffusion in ion-exchangers. 2. Experimental results. Ind. Eng. Chem. Fundam. 21 (1982) 365–369.
  • J.H.G. van der Stegen, A.J. van der Veen, H. Weerdenburg, J.A. Hogendoorn, G.F. Versteeg, Application of the Maxwell-Stefan theory to the transport in ion-selective membranes used in the chloralkali electrolysis process. Chem. Eng. Sci. 54 (1999) 2501–2511.
  • J.A. Hogendoorn, AJVd Veen, JHGVd Stegen, J.A.M. Kuipers, G.F. Versteeg, Application of the Maxwell-Stefan theory to the membrane electrolysis process: Model development and simulation. Comput. Chem. Eng. 25 (2001) 1251–1265.
  • G. Kraaijeveld, V. Sumberova, S. Kuindersma, H. Wesselingh, Modeling electrodialysis using the Maxwell-Stefan description. Chem. Eng. J. Biochem. Eng. J. 57 (1995) 163–176.
  • J. Rocha, Z. Lin, Microporous mixed octahedral-pentahedral-tetrahedral framework silicates, in: G. Ferraris, S. Merlino (Eds.), Micro- and Mesoporous Mineral Phases, Washington, DC, 2005, pp. 173–201.
  • L. Lv, K. Wang, X.S. Zhao, Effect of operating conditions on the removal of Pb2+ by microporous titanosilicate ETS-10 in a fixed-bed column. J. Colloid Interface Sci. 305 (2007) 218–225.
  • J.H. Choi, S.D. Kim, Y.J. Kwon, W.J. Kim, Adsorption behaviors of ETS-10 and its variant, ETAS-10 on the removal of heavy metals, Cu2+, Co2+, Mn2+ and Zn2+ from a waste water. Micropor. Mesopor. Mater. 96 (2006) 157–167.
  • E.D. Camarinha, P.F. Lito, B.M. Antunes, M. Otero, Z. Lin, J. Rocha, E. Pereira, A.C. Duarte, C.M. Silva, Cadmium(II) removal from aqueous solution using microporous titanosilicate ETS-10. Chem. Eng. J. 155 (2009) 108–114.
  • C. Borcia, K. Popa, C.C. Pavel, A. Dascalu, C. Vitelaru, B.A. Apetrachioaei, Sorption of thallous ion from acidic aqueous solutions onto ETS-10 titanosilicate. J. Radioanal. Nucl. Chem. 288 (2011) 25–30.
  • C.C. Pavel, K. Popa, N. Bilba, A. Cecal, D. Cozma, A. Pui, The sorption of some radiocations on microporous titanosilicate ETS-10. J. Radioanal. Nucl. Chem. 258 (2003) 243–248.
  • C.B. Lopes, M. Otero, J. Coimbra, E. Pereira, J. Rocha, Z. Lin, A. Duarte, Removal of low concentration Hg2+ from natural waters by microporous and layered titanosilicates. Micropor. Mesopor. Mater. 103 (2007) 325–332.
  • C.B. Lopes, M. Otero, Z. Lin, C.M. Silva, J. Rocha, E. Pereira, A.C. Duarte, Removal of Hg2+ ions from aqueous solution by ETS-4 microporous titanosilicate - kinetic and equilibrium studies. Chem. Eng. J. 151 (2009) 247–254.
  • C.B. Lopes, M. Otero, Z. Lin, C.M. Silva, E. Pereira, J. Rocha, A.C. Duarte, Effect of pH and temperature on Hg2+ water decontamination using ETS-4 titanosilicate. J. Hazard. Mater. 175 (2010) 439–444.
  • C.B. Lopes, P.F. Lito, M. Otero, Z. Lin, J. Rocha, C.M. Silva, E. Pereira, A.C. Duarte, Mercury removal with titanosilicate ETS-4: Batch experiments and modelling. Micropor. Mesopor. Mater. 115 (2008) 98–105.
  • L.D. Barreira, P.F. Lito, B.M. Antunes, M. Otero, Z. Lin, J. Rocha, E. Pereira, A.C. Duarte, C.M. Silva, Effect of pH on cadmium (II) removal from aqueous solution using titanosilicate ETS-4. Chem. Eng. J. 155 (2009) 728–735.
  • T.R. Ferreira, C.B. Lopes, P.F. Lito, M. Otero, Z. Lin, J. Rocha, E. Pereira, C.M. Silva, A. Duarte, Cadmium(II) removal from aqueous solution using microporous titanosilicate ETS-4. Chem. Eng. J. 147 (2009) 173–179.
  • M. Otero, C.B. Lopes, J. Coimbra, T.R. Ferreira, C.M. Silva, Z. Lin, J. Rocha, E. Pereira, A.C. Duarte, Priority pollutants (Hg2+ and Cd2+) removal from water by ETS-4 titanosilicate. Desalination 249 (2009) 742–747.
  • S.P. Cardoso, C.B. Lopes, E. Pereira, A.C. Duarte, C.M. Silva, Competitive removal of Cd2+ and Hg2+ ions from water using titanosilicate ETS-4: Kinetic behaviour and selectivity. Water Air Soil Pollut. 224 (2013) 1–6.
  • R. Krishna, J.A. Wesselingh, Review article number 50 - the Maxwell-Stefan approach to mass transfer. Chem. Eng. Sci. 52 (1997) 861–911.
  • R. Jackson, Transport in Porous Catalysts. Elsevier, Amsterdam, 1977.
  • W.E. Schiesser, The Numerical Method of Lines. Academic Press, San Diego, CA, 1991.
  • S.M. Kuznicki, Preparation of Small-Pored Crystalline Titanium Molecular Sieve Zeolites, in Engelhard Corporation, 1990.
  • N.N. Greenwood, A. Earnshaw, Chemistry of the Elements. second ed. ed. Elsevier Butterworth Heinemann, Oxford, 2005.
  • R.M. Barrer, L.V. Rees, Self-diffusion of alkali metal ions in analcite. Trans. Faraday Soc. 56 (1960) 709–721.
  • N.M. Brooke, L.V.C. Rees, Kinetics of ion-exchange. 2. Trans. Faraday Soc. 65 (1969) 2728–2739.
  • E.N. Coker, L.V.C. Rees, Ion-exchange in beryllophosphate-G.1. Ion-exchange equilibria, J. Chem. Soc.-Faraday Trans. 88 (1992) 273–276.
  • E.N. Coker, L.V.C. Rees, Kinetics of ion exchange in quasi-crystalline aluminosilicate zeolite precursors. Micropor. Mesopor. Mater. 84 (2005) 171–178.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.