96
Views
21
CrossRef citations to date
0
Altmetric
Articles

Kinetic and isotherm study of Bromothymol Blue and Methylene blue removal using Au-NP loaded on activated carbon

, , &
Pages 5504-5512 | Received 06 Mar 2012, Accepted 06 May 2013, Published online: 23 Jul 2013

References

  • E. Rubin, P. Rodriguez, R. Herrero, J. Cremades, I. Barbara, M. Sastre de Vicente, Removal of Methylene Blue from aqueous solutions using as biosorbent Sargassum muticum: An invasive macroalga in Europe. J. Chem. Technol. Biotechnol. 80 (2005) 291–298.
  • T.A. Albanis, D.G. Hela, T.M. Sakellarides, T.G. Danis, Removal of dyes from aqueous solutions by adsorption on mixtures of fly ash and soil in batch and column techniques. Int. J. Global Nest 2 (2000) 237–244.
  • R.F.P.M. Moreira, M.G. Peruch, N.C. Kuhnen, Adsorption of textile dyes on alumina. Equilibrium studies and contact time effects, Braz. J. Chem. Eng. 15 (1) (1998) 21–28.
  • A. Sari, M. Tuzen, Biosorption of cadmium(II) from aqueous solution by red algae (Ceramium virgatum): Equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater. 157 (2008) 448–454.
  • R.A. Anayurt, A. Sari, M. Tuzen, Equilibrium, thermodynamic and kinetic studies of biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Lactarius scrobiculatus) biomass. Chem. Eng. J. 151 (2009) 255–261.
  • F. Taghizadeh, M. Ghaedi, K. Kamali, E. Sharifpour, R. Sahraie, M.K. Purkait, Comparison of nickel and/or zinc selenide nanoparticle loaded on activated carbon as efficient adsorbents for kinetic and equilibrium study of removal of Arsenazo (ΙΙΙ) dye. Powder Technol. 245 (2013) 217–226.
  • M. Ghaedi, M. Ghayedi, S.N. Kokhdan, R. Sahraei, A. Daneshfar, Palladium, silver, and zinc oxide nanoparticles loaded on activated carbon as adsorbent for removal of bromophenol red from aqueous solution. J. Ind. Eng. Chem. 19 (2013) 1209–1217.
  • M. Ghaedi, F. Karimi, B. Barazesh, R. Sahraei, A. Daneshfar, Removal of reactive orange 12 from aqueous solutions by adsorption on tin sulfide nanoparticle loaded on activated carbon. J. Ind. Eng. Chem. 19 (2013) 756–763.
  • M. Ghaedi, B. Sadeghian, S.N. Kokhdan, A.A. Pebdani, R. Sahraei, A. Daneshfar, A. Mihandoost, Study of removal of Direct Yellow 12 by cadmium oxide nanowires loaded on activated carbon. Mater. Sci. Eng. C 33 (2013) 2258–2265.
  • M. Ghaedi, S.N. Kokhdan, Oxidized multiwalled carbon nanotubes for the removal of methyl red (MR): Kinetics and equilibrium study. Desalin. Water Treat. 49 (2012) 317–325.
  • M. Ghaedi, S. Heidarpour, S. Nasiri Kokhdan, R. Sahraie, A. Daneshfar, B. Brazesh, Comparison of silver and palladium nanoparticles loaded on activated carbon for efficient removal of Methylene blue: Kinetic and isotherm study of removal process. Powder Technol. 228 (2012) 18–25.
  • M. Ghaedi, Comparison of cadmium hydroxide nanowires and silver nanoparticles loaded on activated carbon as new adsorbents for efficient removal of Sunset yellow: Kinetics and equilibrium study. Spectrochim. Acta Part A 94 (2012) 346–351.
  • M. Ghaedi, P. Ghobadzadeh, S. Nasiri Kokhdan, M. Soylak, Oxidized multiwalled carbon nanotubes as adsorbents for kinetic and equilibrium study of removal of 5-(4-dimethyl amino benzylidene)rhodanine. Arabian J. Sci. Eng. 38 (2013) 1691–1699.
  • M. Ghaedi, B. Sadeghian, A.A. Pebdani, R. Sahraei, A. Daneshfar, C. Duran, Kinetics, thermodynamics and equilibrium evaluation of direct yellow 12 removal by adsorption onto silver nanoparticles loaded activated carbon. Chem. Eng. J. 187 (2012) 133–141.
  • M. Ghaedi, J. Tashkhourian, A.A. Pebdani, B. Sadeghian, F.N. Ana, Equilibrium, kinetic and thermodynamic study of removal of reactive orange 12 on platinum nanoparticle loaded on activated carbon as novel adsorbent. Korean J. Chem. Eng. 28 (2011) 2255–2261.
  • W.T. Tsai, C.Y. Chang, M.C. Lin, S.F. Chien, H.F. Sun, M.F. Hsieh, Adsorption of acid dye onto activated carbons prepared from agricultural waste bagasse by ZnCl2 activation. Chemosphere 45 (2001) 51–58.
  • M. Ghaedi, A. Ansari, M.H. Habibi, A.R. Asghari, Removal of malachite green from aqueous solution by zinc oxide nanoparticle loaded on activated carbon: Kinetics and isotherm study original research article, J. Ind. Eng. Chem. (in press). Available online 30 April 2013.
  • G.C. Gerald, S.D. Russel, J. Am. Chem. Soc. 113 (1991) 1636–1639.
  • M.J. Iqbal, M.N. Ashiq, Adsorption of dyes from aqueous solutions on activated charcoal. J. Hazard. Mater. B 139 (2007) 57–66.
  • Z. Wu, H. Joo, I.-S. Ahn, S. Haam, J.-H. Kim, K. Lee, Organic dye adsorption on mesoporous hybrid gels. Chem. Eng. J. 102 (2004) 277–282.
  • X. Li, L. Zheng, L. Huang, O. Zheng, Z. Lin, L. Guo, B. Qiu, G. Chen, Adsorption removal of crystal violet from aqueous solution using a metal-organic frameworks material, copper coordination polymer with dithiooxamide. J. Appl. Polym. Sci. 129 (5) (2013) 2857–2864.
  • M. Alkan, O. Demirbas, S. Celikcapa, M. Dogan, Sorption of acid red 57 from aqueous solution onto sepiolite. J. Hazard. Mater. 116 (2004) 135–145.
  • K. Ravikumar, B. Deebika, K. Balu, Decolourization of aqueous dye solutions by a novel adsorbent: Application of statistical designs and surface plots for the optimization and regression analysis. J. Hazard. Mater. 122 (2005) 75–83.
  • B. Guo, L. Hong, H.X. Jiang, Macroporous poly(calcium acrylatedivinyle/benzene) bead–A selective orthophosphate sorbent. Ind. Eng. Chem. Res. 42 (2003) 5559–5567.
  • F.A. Pavan, Y. Gushikem, A.S. Mazzocato, S.L.P. Dias, E.C. Lima, Statistical design of experiments as a tool for optimizing the batch conditions to methylene blue biosorption on yellow passion fruit and mandarin peels. Dyes Pigm. 72 (2007) 256–266.
  • F.A. Pavan, E.C. Lima, S.L.P. Dias, A.C. Mazzocato, Methylene blue biosorption from aqueous solutions by yellow passion fruit waste. J. Hazard. Mater. 150 (2008) 703–712.
  • E.C. Lima, B. Royer, J.C.P. Vaghetti, N.M. Simon, B.M. da Cunha, F.A. Pavan, E.V. Benvenutti, R.C. Veses, C. Airoldi, Application of Brazilian pine-fruit shell as a biosorbent to removal of reactive red 194 textile dye from aqueous solution: Kinetics and equilibrium study. J. Hazard. Mater. 155 (2008) 536–550.
  • J.C.P. Vaghetti, E.C. Lima, B. Royer, J.L. Brasil, B.M. da Cunha, N.M. Simon, N.F. Cardoso, C.P.Z. Norena, Application of Brazilian-pine fruit coat as a biosorbent to removal of Cr(VI) from aqueous solution-Kinetics and equilibrium study. Biochem. Eng. J. 42 (2008) 67–76.
  • S. Lagergren, Zur theorie der sogenannten adsorption gelöster stoffe. K. Svenska Vetenskapsakademiens. Handl. 24 (1898) 1–39.
  • A.A. Ahmed, B.H. Hameed, N. Aziz, Adsorption of direct dye on palm ash: Kinetic and equilibrium modeling. J. Hazard. Mater. 141 (2007) 70–76.
  • M. Ghaedi, A. Shokrollahi, H. Tavallali, F. Shojaiepoor, B. Keshavarzi, H. Hossainian, M. Soylak, M.K. Purkait, Activated carbon and multiwalled carbon nanotubes an efficient adsorbents for kinetic and equilibrium study of removal of Arsenazo (ΙΙΙ) and methyl red dyes from waste water. Toxicol. Environ. Chem. 93 (2011) 438–449.
  • M. Soylak, Y.E. Unsal, M. Tuzen, Spectrophotometric determination of trace levels of Allura Red in water samples after separation and preconcentration. Food Chem. Toxicol. 49 (2011) 1183–1187.
  • M. Soylak, Y.E. Unsal, E. Yilmaz, M. Tuzen, Determination of Rhodamine B in soft drink, waste water and lipstick samples after solid phase extraction. Food Chem. Toxicol. 49 (2011) 1796–1799.
  • M. Ghaedi, H. Hossainian, M. Montazerozohori, A. Shokrollahi, F. Shojaipour, M. Soylak, M.K. Purkait, A Novel acorn based adsorbent for the removal of Brilliant Green. Desalination 281 (2011) 226–233.
  • G. Karimipour, M. Ghaedi, R. Sahraei, A. Daneshfar, M.N. Biyareh, Modification of gold nanoparticle loaded on activated carbon with bis(4-methoxysalicylaldehyde)-1,2-phenylenediamine as new sorbent for enrichment of some metal ions. Biol. Trace Elem. Res. 145 (2012) 109–117.
  • Y.S. Ho, G. Mckay, Sorption of dye from aqueous solution by peat. Chem. Eng. J. 70 (1998) 115–124.
  • W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanitary. Eng. Div. Am. Soc. Civil Eng. 89 (1963) 31–59.
  • G. Crini, C. Robert, F. Gimbert, B. Martel, O. Adam, F. De Giorgi, The removal of Basic Blue 3 from aqueous solutions by chitosan-based adsorbent: Batch studies. J. Hazard. Mater. 153 (2007) 96–106.
  • G. McKay, H.S. Blair, J.R. Gardner, I.F. McConvey, Two-resistance mass transfer model for the adsorption of various dyestuffs onto chitin. J. Appl. Polym. Sci. 30 (1985) 4325–4335.
  • G. Gibbs, J.M. Tobin, E. Guibal, Sorption of Acid Green 25 on chitosan: Influence of experimental parameters on uptake kinetics and sorption isotherms. J. Appl. Polym. Sci. 90 (2003) 1073–1080.
  • E. Guibal, P. McCarrick, J.M. Tobin, Comparison of the sorption of anionic dyes on activated carbon and chitosan derivatives from dilute solutions. Sep. Sci. Technol. 38 (2003) 3049–3073.
  • Y.S. Ho, G. McKay, D.A.J. Wase, C.F. Foster, Study on the sorption of divalent metal ions onto peat. Adsorpt. Sci. Technol. 18 (2000) 639–650.
  • J.J. Pignatello, F.J. Ferrandino, L.Q. Huangm, Elution of aged and freshly added herbicides from a soil. Environ. Sci. Technol. 27 (1993) 1563–1571.
  • M. Ghaedi, A. Shokrollahi, H. Hossainian, S. Nasiri Kokhdan, Comparison of activated carbon and multiwalled carbon nanotubes for efficient removal of Eriochrome cyanine R (ECR): Kinetic, isotherm, and thermodynamic study of the removal process, J. Chem. Eng. Data. 56 (2011) 3227–3235.
  • Y.H. Li, Z. Di, J. Ding, D. Wu, Z. Luan, Y. Zhu, Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res. 39 (2005) 605–609.
  • C. Lu, Y.-L. Chung, K.-F. Chang, Adsorption thermodynamic and kinetic studies of trihalomethanes on multiwalled carbon nanotubes. J. Hazard. Mater. B138 (2006) 304–310.
  • G. McKay, Use of adsorbents for the removal of pollutants from wastewater, CRC Press, Kowloon, 1995, p. 208.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.