150
Views
12
CrossRef citations to date
0
Altmetric
Articles

Modeling drinking water chlorination at the breakpoint: I. Derivation of breakpoint reactions

&
Pages 5757-5768 | Received 14 Feb 2012, Accepted 23 May 2013, Published online: 30 Jul 2013

References

  • American Chemistry Council, Drinking Water Chlorination: A Review of Disinfect and Issues, Chlorine Chemistry Division, 2007.
  • A. Nikolaou, in: Haloforms and Related Compounds in Drinking Water 5G Handbook of Environmental of Environmental of Chemistry, Springer-Verlag, Berlin, 2003, pp. 1–19.
  • A Public Health Giant Step, Chlorination of US Drinking Water, Publication of Water Quality and Health concil to the chlorine chemistry division of the American chemistry concil, 2008.
  • Ground Water Disinfection: Chlorine’s Role in Public Health Chlorine’s Critical Role in, Public Health, Water Quality and Health, November, 1997.
  • EPA, Combined Sewer Overflow, Technology Fact Sheet, Chlorine Disinfection, Office of water, Washington, DC, 1999.
  • Commission du codex alimentarius, Document de travail sur l’utilisation du chlore actif [Codex Alimentarius Commission, Working paper on the use of active chlorine], Fao. Org. (2003).
  • G.L. Amy, P.A. Chadlk, P.H. King, W.J. Cooper, Chlorine utilization during Trihalomethane formation in the presence of ammonia and bromide. Environ. Sci. Technol. 18 (1984) 781–786.
  • D.T. Wigle, Enoncé de position. Une eau saine: Un défi pour la santé publique [Position statement, Clean water: A challenge for public health]. Health Can. 19 (1998) 116–121.
  • K. Gopal, S.S. Tripathy, J.L. Bersillon, S.P. Dubey, Chlorination byproducts, their toxicodynamics and removal from drinking water. J. Hazard. Mater. 140 (2007) 1–6.
  • Groupe scientifique sur l’eau. Fiche Trihalométhanes, Décembre, Institut national de santé publique du Québec [Panel on water, Trihalomethanes Sheet, December, National Institute of Public Health of Quebec], Quebec, 2002.
  • M.J. McGuire, Eight revolutions in the history of US drinking water disinfection. J. AWWA 98 (2006) 123–149.
  • L.M. Devkota, D.S. Williams, J.H. Matta, O.E. Alberson, D. Grass, P. Fox, Variation of oxidation-reduction potential along the breakpoint curves in low-ammonia effluents. Water Environ. Res. 72 (2000) 610–617.
  • E.A. Kobylinski, G.L. Hunter, A.R. Shaw, On line control strategies for disinfection systems: Success and failure, Water Environ. Found. 24 (2006) 6371–6394.
  • T.A. Pressley, D.F. Bishop, S.G. Roan, Ammonia removal by breakpoint chlorination. Environ. Sci. Technol. 6 (1972) 622–628.
  • C.J. Morris, Chlorination and disinfection—state of the art. J. AWWA 63 (1971) 769–774.
  • D.F. Bishop, A.F. Cassel, T.A. Pressely, Ammonia removal by breakpoint chlorination, State Patent, Office, 1973.
  • Metcalf and Eddy, Wastewater Engineering, Treatment and Reuse, ed., McGraw-Hill, New York, 2003, pp. 1219–1286.
  • F.W. Pontius (Ed.), Water Quality and Treatment—A Handbook Community Water Supplies, fourth ed., McGraw, New York, 1990, pp. 877–931.
  • V. Snoeyink, D. Jenkins, Water Chemistry, Wiley, 1980, pp. 316–430.
  • J.M. Montgomry, Water Treatment Principles and Design. Wiley-Interscience, New York, NY, 1985 . pp. 262–283.
  • Priority Substances List Assessment report, Inorganic Chloramines, Canadian Environmental Protection Act, 1999.
  • J. Edward, B.S.C.H.E. Haller, Simplified Wastewater Treatment Plant Operations. Technomic, Chicago, IL, 1995 . pp. 113–117.
  • W.W. Schuk, T.A. Pressley, D.F. Bishop, Automatic control system for the safe and economical removal of NH3 by breakpoint chlorination, State Patent, Office, 1973.
  • V.C. Hand, D.W. Margerum, Kinetics and mechanisms of the decomposition of dichloramine in aqueous solution. Inorg. Chem. 22 (1983) 1449–1456.
  • R.L. Valentine, K.I. Brandt, C.T. Jafvert, A Spectrophotometric study of the formation of an unidentified monochloramine decomposition product. Water Res. 20 (1986) 1067–1074.
  • R.N. Ward, R.L. Wolfe, B.H. Olson, Effect of pH, application technique, and chlorine-to-nitrogen ratio on disinfectant activity of inorganic chloramine with pure culture bacteria. Appl. Environ. Microbiol. 48 (1984) 508–514.
  • R.C. Hoehn, Comparative disinfection methods. Water technology quality, J. AWWA. 68 (1976) 302–308.
  • R.E. Connick, Y.-T. Chia, The hydrolysis of chlorine and its variation with temperature. J. Chem. Soc. 81 (1959) 1280–1284.
  • C.J. Morris, The acid ionization constant of HOCl from 5 to 35°. J. Phys. Chem. 70 (1966) 3798–3805.
  • P.V. Scarpino, G. Berg, S.L. Chang, D. Dahling, M. Lucas, A comparative study of the inactivation of viruses in water by chlorine. Water Res. 6 (1972) 959–965.
  • R.G. Bates, G.D. Pinching, Dissociation constant of aqueous ammonia at 0 to 50° from E. m. f. studies of the ammonium salt of a weak acid. J. Am. Chem. Soc. 72 (1950) 1393–1396.
  • V. Dlyamandoglu, R.E. Selleck, Reactions and products of chloramination. Environ. Sci. Technol. 26 (1992) 808–814.
  • C.T. Jafvert, R.L. Valentine, Reaction scheme for the chlorination of ammoniacal water. Environ. Sci. Technol. 26 (1992) 577–586.
  • H. Galal-Gorchev, Disinfection of Drinking Water and By-Products of Health Concern, World Health Organization, 1998.
  • R.L. Valentine, C.T. Jafvert, S.W. Leung, Evaluation of a chloramine decomposition model incorporating general acid catalysis. Water Res. 22 (1988) 1147–1153.
  • L. Duvivier, La monochloramine, un désinfectant alternatif pour le conditionnement des circuits de réfrigération industriels, partie 1: Aspects théoriques [Monochloramine, an alternative disinfectant for conditioning industrial refrigeration circuits, part 1: Theoretical Aspects]. La Tribune de l’eau [The Water Tribune] 54 (2001) 3–11.
  • I. Wiel, C.J. Morris, Kinetic studies on the chloramines. I. The rates of formation of monochloramine, N-chlormethylamine and N-chlordimethylamine. J. Am. Chem. Soc. 71 (1949) 1664–1671.
  • Z. Qiang, C.D. Adams, Determination of monochloramine formation rate constants with stopped-flow spectrophotometry. Environ. Sci. Technol. 38 (2004) 1435–1444.
  • J.C. Morris, R.A. Isaac, A critical review of kinetics and thermodynamic constants for the aqueous chlorine, in: Water Chlorination: Environmental Impact Health Effect, Ann Arbor science Publishers, Inc. Ann Arbor, Vol. 5, 1985.
  • M. Anbar, G. Yagil, The hydrolysis of chloramine in alkaline solution. J. Am. Chem. Soc. 84 (1962) 1790–1796.
  • P.J. Vikesland, K. Ozekin, R.L. Valentine, Monochloramine decay in model and distribution system waters. Water Res. 35 (2001) 1766–1776.
  • S.W. Leung, R.L. Valentine, An unidentified chloramine decomposition product—I. Chemistry and characteristics, Water Res. 28 (1994) 1475–1483.
  • R.M. Chapin, Dichloro-amine. J. Am. Chem. Soc. 51 (1929) 2112–2117.
  • C.T. Jafvert, R.L. Valentine, Dichloramine decomposition in the presence of excess ammonia. Water Res. 21 (1987) 967–973.
  • K. Kumar, R.W. Shinness, D.W. Margerum, Kinetics and mechanisms of the base decomposition of nitrogen trichloride in aqueous solution. Inorg. Chem. 26 (1987) 3430–3434.
  • B.S. Yiin, D.W. Margerum, Non-metal redox kinetics: Reactions of trichloramine with ammonia and with dichloramine. Inorg. Chem. 29 (1990) 2135–2141.
  • J.H. Kim, M.K. Stenstrom, Modeling and parameter studies for optimal chlorination, Environ. Biol. Eng. Div. (1997) 1579–1585.
  • US EPA, Guidance Manual Alternative Disinfectants and Oxidants, Office of water(4607), EPA 815-R-99-014, April 1999.
  • S.E. Duirk, B. Gombert, J. Choi, R.L. Valentine, Monochloramine loss in the presence of humic acid. Environ. Monit. 4 (2002) 85–89.
  • M.K. Stenstrom, H.G Tran, A theoretical and experimental investigation of the dynamic of breakpoint chlorination in dispersed flow reactors, A report to the University of California Water Resources Center, Davis, CA, 1984.
  • M.K. Stenstrom, J.F. Andrews, Dynamic modeling of the chlorine contact basin in wastewater treatment plant, Paper presented at the JACC conference, San Francisco, CA, 1977.
  • J.W. Eilbeck, Redox control in breakpoint chlorination of ammonia and metal amine complexes. Water Res. 18 (1984) 21–24.
  • J.V. Maston, J.F. Andrews, M.T. Garrett, Reduction in chlorine requirements by control of nitrification in an oxygen activated sludge process. Water Res. 16 (1982) 1083–1091.
  • A.E. Griffin, N.S. Chamberlin, Relation of ammonia–nitrogen to break-point chlorination. Am. J. Public Health 31 (1941) 803–808.
  • J.J. Morrow, R.N. Roop, Advances in chlorine-residual analysis. J. AWWA 67 (1975) 184–186.
  • C. Lu, P. Biswas, R.M. Clark, Modeling of breakpoint reaction in drinking water distribution pipes. Environ. Int. 19 (1993) 543–560.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.