134
Views
7
CrossRef citations to date
0
Altmetric
Articles

Application of the BDST model for nickel removal from effluents by ion exchange

, &
Pages 7866-7877 | Received 18 Mar 2013, Accepted 12 Jul 2013, Published online: 18 Sep 2013

References

  • W.J.M. Dedietrich, F.P. Reinhard, Waste minimization and recovery technologies. Met. Finish. 105 (10) (2007) 715–742.
  • T.H. Eom, C.H. Lee, J.H. Kim, C.H. Lee, Development of an ion exchange system for plating wastewater treatment. Desalination 180 (1–3) (2005) 163–172.
  • Y. Hannachi, A. Hannachi, The efficiency of the flotation technique for the removal of nickel ions from aqueous solution. Desalin. Water Treat. 6 (1–3) (2009) 299–306.
  • H.J. Mansoorian, A. Rajabizadeh, E. Bazrafshan, A.H. Mahvi, Practical assessment of electrocoagulation process in removing nickel metal from aqueous solutions using iron-rod electrodes. Desalin. Water Treat. 44 (1–3) (2012) 29–35.
  • A. Talebi, T.T. Teng, A.F.M. Alkarkhi, I. Norli, L.W. Low, Optimization of nickel removal using liquid-liquid extraction and response surface methodology. Desalin. Water Treat. 47 (1–3) (2012) 334–340.
  • Y. Hannachi, N.A. Shapovalov, A. Hannachi, Adsorption of nickel from aqueous solution by the use of low-cost adsorbents. Desalin. Water Treat. 12 (1–3) (2009) 276–283.
  • H.J. Su, Z.X. Wang, W.T. Tan, Adsorption of Ni (2+) on the surface of molecularly imprinted adsorbent from Penicillium chyosgenum mycelium. Biotechnol. Lett. 25 (12) (2003) 949–953.
  • W.T. Tan, C.K. Lee, K.L. Ng, Column studies of copper (2+) and nicked (2+) ions sorption on palm pressed fibres. Environ. Technol. 17 (1996) 621–628.
  • G. Wang, A. Li, M. Li, Sorption of nickel ions from aqueous solutions using activated carbon derived from walnut shell waste. Desalin. Water Treat. 16 (1–3) (2010) 282–289.
  • K.K.H. Choy, G. McKay, Sorption of metal ions from aqueous solution using bone char. Environ. Int. 31 (2005) 845–854.
  • C.K. Ko, J.F. Porter, G. McKay, Mass transport model for the fixed bed sorption of metal ions on bone char. Ind. Eng. Chem. Res. 42 (2003) 3458–3469.
  • J. Jangbarwala, Ion exchange resins for metal finishing wastes. Met. Finish. 95 (11) (1997) 33–34.
  • H. Eccles, Ion exchange—future challenges/opportunities in environmental clean-up, Proceedings of the Ion-Ex ’95 Conference: Progress in Ion Exchange—Advances and Applications, Wrexham, Royal Society of Chemistry, Information Services, Cambridge, 1995, pp. 245–259.
  • S.J. Allen, P. Brown, O. Flynn, G. McKay, An evaluation of single transfer models on the sorption of metal ions by peat. J. Chem. Technol. Biotechnol. 45 (3) (1992) 173–189.
  • G. McKay, B. Vong, J.F. Porter, Isotherm studies for the sorption of metal ions on to peat. Adsorpt. Sci. Technol. 16 (1) (1998) 51–66.
  • Y.S. Ho, G. McKay, Competitive sorption of copper and nickel ions from aqueous solutions using peat. Adsorption 5 (1999) 405–417.
  • Y.S. Ho, G. McKay, The kinetics of sorption of divalent metals onto sphagnum moss peat. Water Res. 34 (2000) 735–742.
  • Y.S. Ho, G. McKay, G. Wase, C.F. Forster, Study of the sorption of divalent metal ions on to peat. Adsorpt. Sci. Technol. 18 (2000) 639–650.
  • Y.S. Ho, J.F. Porter, G. Mckay, Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: Copper, nickel and lead single component systems. Water Air Soil Pollut. 141 (2002) 1–33.
  • A. Demirbas, E. Pehlivan, F. Gode, T. Altum, G. Arslan, Adsorption of Cu(2+), Zn(2+), Ni(2+), Pb(2+), and Cd(2+) from aqueous solution on Amberlite IR-120 synthetic resin. J. Colloid Interface Sci. 282 (1) (2005) 20–25.
  • K.F. Lam, K.L. Yeung, G. McKay, Efficient approach for Cd2+ and Ni2+ removal and recovery using mesoporous adsorbent with tunable selectivity. Environ. Sci. Technol. 41 (2007) 3329–3334.
  • A. Ma, T.H. Shek, S.J. Allen, V.K.C. Lee, G. McKay, Removal of nickel from effluents by chelating ion exchange. J. Chem. Technol. Biotechnol. 83 (2008) 1623–1632.
  • A. Demirbas, E. Pehlivan, F. Gode, Adsorption of Cu(2+), Zn(2+), Ni(2+), Pb(2+), and Cd(2+) from aqueous solution on Amberlite IR-120 synthetic resin. J. Coll. Interf. Sci. 282 (1) (2005) 20–25.
  • K.G. Ashurst, Thermodynamic aspects of chelating ion exchange resins. in: D. Naden, M. Streat (Eds.) Ion Exchange Technology. Ellis Horwood, Chichester, 1984, pp. 189–200.
  • E. Arevalo, A. Fernandez, M. Rendueles, M. Diaz, Equilibrium of metals with iminodiacetic resin in binary and ternary systems. Solvent Extr. Ion Exch. 17 (2) (1999) 429–454.
  • C. Eger, W.M. Anspach, J.A. Marinsky, The co-ordination behavior of Co, Ni, Cu and Zn in a chelating ion-exchange resin I-II. Ind. Eng. Chem. Fundam. 30 (1968) 1899–1909.
  • A.K. Sengupta, Y. Zhu, D. Hauze, Metal (II) ion binding onto chelating exchangers with nitrogen donor atoms: Some new observations and related implications. Environ. Sci. Technol. 25 (1991) 481–488.
  • F.G. Helfferich, Ion-exchange kinetics. A nonlinear diffusion problem. II. Particle diffusion controlled exchange of univalent and bivalent ions. J. Chem. Phys. 29 (5) (1958) 1064–1069.
  • F.G. Helfferich, Ion exchange kinetics—Evolution of a theory, Mass Transfer and Kinetics of Ion Exchange, NATO ASI, Series E, No.71 (1983).
  • F.G. Helfferich, Ion Exchange. Dover Publications, New York, NY, 1995.
  • G.S. Bohart, E.Q. Adams, Some aspects of the behavior of charcoal with respect to chlorine. J. Chem. Soc. 42 (1920) 523–529.
  • R.A. Hutchins, New method simplifies design of activated carbon systems. Chem. Eng. 80 (1973) 133–138.
  • C.K. Ko, J.F. Porter, G. McKay, Mass transport model for the fixed bed sorption of metal ions on bone char. Ind. Eng. Chem. Res. 42 (2003) 3458–3469.
  • J.C. Crittenden, W.J. Weber Jr, Predictive model for design of fixed-bed adsorbers: Single-component model verification. J. Environ. Eng. Division ASCE 104 (EE22) (1978) 433–443.
  • G. McKay, Mass transfer processes during the adsorption of solutes in aqueous solutions in batch and fixed bed adsorbers. Chem. Eng. Res. Des. 62 (1984) 235–246.
  • W.J. Weber Jr, C.K. Wang, A microscale system for estimation of model parameters for fixed-bed adsorbers. Environ. Sci. Technol. 21 (1987) 1096–1102.
  • G. McKay, M.J. Bino, Adsorption of pollutants on to activated carbon in fixed beds. J. Chem. Technol. Biotechnol. 37 (2) (1987) 81–93.
  • E.H. Smith, W.J. Weber Jr, Evaluation of mass transfer parameters for adsorption of organic compounds from complex organic matrices. Environ. Sci. Tecnol. 23 (1966) 713–722.
  • E.J. Wilson, C.J. Geankoplis, Liquid mass transfer at very low Reynolds numbers in packed beds. Ind. Eng. Chem. Fundam. 5 (1966) 9–12.
  • G. McKay, Basic dye adsorption on activated carbon. Water Air Soil Pollut. 12 (1979) 307–317.
  • M.F.F. Sze, V.K.C. Lee, G. McKay, Simplified fixed bed column model for adsorption of organic pollutants using tapered activated carbon columns. Desalination 218 (2008) 323–333.
  • W. Holl, H. Sontheimer, Ion exchange kinetics of the protonation of weak acid ion exchange resins. Chem. Eng. Sci. 32 (1977) 755–762.
  • M. Streat, Kinetics of slow diffusing species in ion exchangers. React. Polym. 2 (1984) 79–91.
  • H. Yoshida, T. Kataoka, S. Fujikawa, Kinetics in a chelate ion exchanger-II. Experimental. Chem. Eng. Sci. 41 (1986) 2525–2530.
  • F. Helfferich, Ion-exchange kinetics. V. Ion exchange accompanied by reactions. J. Phys. Chem. 69 (4) (1965) 1178–1187.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.