74
Views
2
CrossRef citations to date
0
Altmetric
Articles

Anthraquinone 2-sulfonic acid-mediated reduction of Cr(VI) by Bacillus sp. BT1

&
Pages 221-229 | Received 01 Apr 2013, Accepted 14 Aug 2013, Published online: 16 Sep 2013

References

  • M. Costa, Toxicology and carcinogenicity of Cr(VI) in animal models and humans. Crit. Rev. Toxicol. 27 (1997) 431–442.
  • H. Nishioka, Mutagenic activity of metal compounds in bacteria. Mutat. Res. 31 (1975) 185–189.
  • S. Venitt, L.S. Levy, Mutagenicity of chromate in bacteria and its relevance to chromate carcinogenesis. Nature 250 (1974) 493–495.
  • M.E. Losi, C. Amrhein, W.T. Frankenberger, Factors affecting chemical and biological reduction of hexavalent chromium in soil. Environ. Toxicol. Chem. 13 (1994) 1727–1735.
  • F. Saleh, T.F. Parkerton, R.V. Lewis, J.H. Huang, K.L. Dickson, Kinetics of chromium transformations in the environment. Sci. Total Environ. 86 (1989) 25–41.
  • M.J.R. Shannon, R. Unterman, Evaluating bioremediation: Distinguishing fact from fiction. Ann. Rev. Microbiol. 47 (1993) 715–738.
  • C.R. Myers, B.P. Carstens, W.E. Antholine, J.M. Myers, Chromium(VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR-1. J. Appl. Microbiol. 88 (2000) 98–106.
  • C.H. Park, M. Keyhan, B. Wielinga, S. Fendorf, A. Matin, Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Appl. Environ. Microbiol. 66 (2000) 1788–1795.
  • D.P. Clark, Chromate reductase activity of Enterobacter aerogenes is induced by nitrite. FEMS Microbiol. Lett. 122 (1994) 233–238.
  • C.F. Gonzalez, D.F. Ackerley, C.H. Park, A. Matin, A soluble flavoprotein contributes to chromate reduction and tolerance by Pseudomonas putida. Acta Biotechnol. 23 (2003) 233–239.
  • C.F. Gonzalez, D.F. Ackerley, S.V. Lynch, A. Matin, ChrR, A soluble quinone reductase of Pseudomonas putida that defends against H2O2. J. Biol. Chem. 280 (2005) 22590–22595.
  • J. Mazoch, R. Tesar, V. Sedlacek, I. Kucera, J. Turanek, Isolation and biochemical characterization of two soluble iron (III) reductases from Paracoccus denitrificans. Eur. J. Biochem. 271 (2004) 553–562.
  • D.F. Ackerley, C.F. Gonzalez, C.H. Park, R. Blake, M. Keyhan, A. Matin, Chromate reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli, Appl. Environ. Microbiol. 70 (2004) 873–882.
  • P.C. Wang, T. Mori, K. Toda, H. Ohtake, Membrane associated chromate reductase activity from Enterobacter cloacae. J. Bacteriol. 172 (1990) 1670–1672.
  • S.P.B. Kamaludeen, M. Megharaj, R. Naidu, I. Singleton, A.L. Juhasz, B.G. Hawke, N. Sethunathan, Microbial activity and phospholipid fatty acid pattern in long term tannery waste contaminated soil. Ecotoxicol. Environ. Saf. 56 (2003) 302–310.
  • N. Sethunathan, M. Megharaj, L. Smith, S.P.B. Kamaludeen, S. Avudainayagam, R. Naidu, Microbial role in failure of natural attenuation of chromium (VI) in long term tannery waste contaminated soil. Agri. Ecosys. Environ. 105 (2005) 657–661.
  • F.P.V.D. Zee, F.J. Cervantes, Impact and application of electron shuttles on the redox (bio) transformation of contaminants: A review. Biotechnol. Adv. 27 (2009) 256–277.
  • D.R. Bond, D.R. Lovley, Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones. Environ. Microbiol. 4 (2002) 115–124.
  • W.D. Burgos, Y. Fang, R.A. Royer, G.T. Yeh, J.J. Stone, B.H. Jeonn, B.A. Dempsey, Reaction based modelling of quinone mediated bacterial iron(III) reduction. Geochim. Cosmochim. Acta 67 (2003) 2735–2748.
  • D.R. Lovley, J.L. Fraga, E.L. Blunt-Harris, L.A. Hayes, E.J.P. Phillips, J.D. Coates, Humic substance as a mediator for microbially catalyzed metal reduction. Acta Hydroch. Hydrob. 26 (1998) 152–157.
  • D.R. Lovley, J.L. Fraga, J.D. Coates, E.L. Blunt-Harris, Humics as an electron donor for anaerobic respiration. Environ. Microbiol. 1 (1999) 89–98.
  • J.K. Fredrickson, H.M. Kostandarithes, S.W. Li, A.E. Plymale, M.J. Daly, Reduction of Fe(III), Cr(VI), U(VI) and Tc(VII) by Deinococcus radiodurans R1. Appl. Environ. Microbiol. 66 (2000) 2006–2011.
  • G. Liu, H. Yang, J. Wang, R. Jin, J. Zhou, H. Lv, Enhanced chromate reduction by resting Escherichia coli cells in the presence of quinone redox mediators. Bioresour. Technol. 101 (2010) 8127–8131.
  • X. Wang, G. Liu, J. Zhou, J. Wang, R. Jin, H. Lv, Quinone mediated reduction of selenite and tellurite by Escherichia coli. Bioresour. Technol. 102 (2011) 3268–3271.
  • Y. Hong, P. Wu, W. Li, J. Gu, S. Duan, Humic analog AQDS and AQS as an electron mediator can enhance chromate reduction by Bacillus sp. strain 3C3. Appl. Microbiol. Biotechnol. 93 (2012) 2661–2668.
  • Z. Aksu, Application of biosorption for the removal of organic pollutants: A review. Process Biochem. 40 (2005) 997–1026.
  • G.J. Puzon, J.N. Petersen, A.G. Roberts, D.M. Kramer, L. Xun, A bacterial flavin reductase system reduces chromate to a soluble chromium (III)-NAD+ complex. Biochem. Biophys. Res. Commun. 294 (2002) 76–81.
  • Y. Ishibashi, C. Cerventes, S. Silver, Chromium reduction in Pseudomonas putida. Appl. Environ. Microbiol. 6 (1990) 2268–2270.
  • O.H. Lowry, N.J. Rosebroough, A.L. Farr, R.J. Randall, Protein measurements with folin phenol reagents. J. Biol. Chem. 193 (1951) 265–275.
  • J. Ling, L.U. Hong, Z. Jiti, W. Jing, Quinone mediated decolourization of sulfonated azo dyes by cells and cell extracts from Sphingomonas xenophaga. J. Environ. Sci. 21 (2009) 503–508.
  • R.A. Maithreepala, R. Doong, Transformation of carbon tetrachloride by biogenic iron species in the presence of Geobacter sulfurreducens and electron shuttles. J. Hazard. Mater. 164 (2009) 337–344.
  • Y. Wang, C. Wu, X. Wang, S. Zhou, The role of humic substances in the anaerobic reductive dechlorination of 2,4-dichlorophenoxyacetic acid by Comamonas korensis strain CY01. J. Hazard. Mater. 164 (2009) 941–947.
  • A.B.D. Santos, F.J. Cervantes, J.B. Lier, Azo dye reduction by thermophilic anaerobic granular sludge and the impact of the redox mediator anthraquinone-2, 6-disulfonate (AQDS) on the reductive biochemical transformation. Appl. Microbiol. Biotechnol. 64 (2004) 62–69.
  • L.E. Sendelbach, A review of the toxicology and carcinogenicity of anthraquinone derivatives. Toxicology 57 (1989) 227–240.
  • V. Sedlacek, I. Kucera, Chromate reductase activity of the Paracoccus denitrificans ferric reductase B (FerB) protein and its physiological relevance. Arch. Microbiol. 192 (2010) 919–926.
  • G. Liu, J. Zhou, J. Wang, M. Zhou, H. Lu, R. Jin, Acceleration of azo dye decolorization by using quinone reductase activity of azoreductase and quinone redox mediator. Bioresour. Technol. 100 (2009) 2781–2795.
  • J. Rau, H.J. Knackmuss, A. Stolz, Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria. Environ. Sci. Technol. 36 (2002) 1497–1504.
  • J. Rau, A. Stolz, Oxygen-insensitive nitroreductases NfsA and NfsB of Escherichia coli function under anaerobic conditions as lawsone dependent azo reductases. Appl. Environ. Microbiol. 69 (2003) 3448–3455.
  • A. Sarangi, C. Krishnan, Comparison of in vitro Cr(VI) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil. Bioresour. Technol. 99 (2008) 4130–4137.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.