84
Views
0
CrossRef citations to date
0
Altmetric
Articles

Slip flow heat transfer in micro-tubes with viscous dissipation

&
Pages 1263-1274 | Received 10 Nov 2012, Accepted 23 Sep 2013, Published online: 18 Nov 2013

References

  • H. Bahrami, T.L. Bergman, A. Faghri, Forced convective heat transfer in a microtube including rarefaction, viscous dissipation and axial conduction effects, Int. J. Heat Mass Transfer 55 (2012) 6665–6675.
  • A. Agrawal, L. Djenidi, R.A. Antonia, Simulation of gas flow in microchannels with a sudden expansion or contraction, J. Fluid Mechanics 530 (2005) 135–144.
  • B. Cetin, H. Yuncu, S. Kakac, Gaseous flow in microconduits with viscous dissipation, Int. J. Trans. Phenomena 8 (2007) 297–315.
  • N. Hadjiconstntinou, O. Simek, Constant wall temperature Nusselt number in micro and nano channels, J. Heat Transfer 124 (2002) 356–364.
  • T. Zhang, L. Jia, L. Yang, Y. Jaluria, Effect of viscous heating on heat transfer performance in microchannel slip flow regime, Int. J. Heat Mass Transfer 53 (1010) 4927–4934.
  • F.E. Larrode, C. Housiadas, Y. Drossinos, Slip-flow heat transfer in circular tubes, Int. J. Heat Mass Transfer 43 (2000) 2669–2680.
  • B. Cetin, A. Yazicioglu, S. Kakac, Fluid flow in microtubes with axial conduction including rarefaction and viscous dissipation, Int. Com. Heat Mass Transfer 35 (2008) 535–544.
  • S. Yu, T.A. Ameel, Slip flow heat in rectangular microchannels, Int. J. Heat Mass Transfer 44 (2001) 4225–4234.
  • S. Yu, T.A. Ameel, Slip-flow convection in isoflux rectangular microchannels, J. Heat Transfer 124 (2002) 346–355.
  • R.F. Barron, X. Wang, R.O. Warringtonand, T.A. Ameel, Evaluation of the eigenvalues for the Graetz problem in slip-flow, Int. Com. Heat Mass Transfer 23 (1996) 563–574.
  • N. Xiao, J. Elsnab, T.A. Ameel, Microtube gas flows with second-order slip flow and temperature jump boundary conditions, Int. J. Thermal Sci. 48 (2009) 243–251.
  • M.S. El-Genk, I.H. Yang, A numerical analysis of laminar flow in micro-tubes with a slip boundary, Energy Convers. Manage. 50 (2009) 1481–1490.
  • H.E. Jeong, J.T. Jeong, Extended Graetz problem including streamwise conduction and viscous dissipation in microchannel, Int. J. Heat Mass Transfer 49 (2006) 2151–2157.
  • O. Aydin, M. Avci, Heat and fluid flow characteristics of gases in micropipes, Int. J. Heat Mass Transfer 49 (2006) 1723–1730.
  • M. Avci, O. Aydin, E. Arici, Conjugate Heat Transfer with viscous dissipation in a microtube, Int. J. Heat Mass Transfer 55 (2012) 5302–5308.
  • C. Cai, Q. Sun, I.D. Boyd, Gas flows in microchannels and microtubes, J. Fluid Mech. 589 (2007) 305–314.
  • R. Singh, R.L. Laurence, Influence of slip velocity at a membrane surface on ultrafiltration performance—I. Channel flow system, Int. J. Heat Mass Transfer 22 (1979) 721–729.
  • R. Singh, R.L. Laurence, Influence of slip velocity at a membrane surface on ultrafiltration performance—II. Tube flow system, Int. J. Heat Mass Transfer 22 (1979) 731–737.
  • G. Ramon, Y. Agnon, C. Dosretz, Heat transfer in vacuum membrane distillation: Effect of velocity slip, J. Membr. Sci. 331 (2009) 117–125.
  • S. Kakac, A.G. Yazicloglu, A.C. Gozukara, Effect of variable thermal conductivity and viscosity on single phase convective heat transfer in slip flow, Heat Mass Transfer 47 (2011) 879–891.
  • Z. Sun, Y. Jaluria, Convective heat transfer in pressure-driven nitrogen slip flows in long microchannels: The effects of pressure work and viscous dissipation, Int. J. Heat Mass Transfer 55 (2012) 3488–3497.
  • S. Colin, Gas microflows in the slip flow regime: A critical review on convective heat transfer, ASME J. Heat Transfer 134 (20908) (2012) 1–13.
  • S. Colin, P. Lalonde, R Caen, Validation of a second-order slip flow model in rectangular microchannels, Heat Transfer Eng. 25 (2004) 23–30.
  • H.L. Liu, X.D. Shao, J.Y. Jia, Effects of axial heat conduction and viscous dissipation on heat transfer in circular micro-channels, Int. J. Thermal Sci. 66 (2013) 34–41.
  • A. Bejan, Convective Heat Transfer, 3rd ed., John Wiley, New Jersey, NJ, 2004, p. 694.
  • H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd ed., Pearson and Prentice Hall, Essex, 2007.
  • M.K. Jensen, Simultaneously developing laminar flow in an isothermal circular tube, Int. Comm. Heat Mass Transfer 16 (1989) 811–820.
  • R.W. Hornbeck, Laminar flow in the entrance region of a pipe, Appl. Sci. Res., Sect. A 13 (1964) 224–232.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.