86
Views
23
CrossRef citations to date
0
Altmetric
Articles

Simultaneous removal of CUII, NIII and ZNII by a granular mixture of zero-valent iron and pumice in column systems

, &
Pages 767-776 | Received 07 Feb 2014, Accepted 09 Apr 2014, Published online: 09 May 2014

References

  • D.W. Blowes, C.J. Ptacek, S.G. Benner, C.W.T. McRae, T.A. Bennet, R.W. Puls, Treatment of inorganic contaminants using permeable reactive barrier, J. Contam. Hydrol. 45 (2000) 123–137.
  • S. Fiore, M.C. Zanetti, Preliminary tests concerning zero-valent iron efficiency in inorganic pollutants remediation, Am. J. Environ. Sci. 5 (2009) 555–560.
  • R.T. Wilkin, M.S. McNeil, Laboratory evaluation of zero-valent iron to treat water impacted by acid mine drainage, Chemosphere 53 (2003) 715–725.
  • T.E. Shokes, G. Möller, Removal of dissolved heavy metals from acid rock drainage using iron metal, Environ. Sci. Technol. 33 (1999) 282–287.
  • R.T. Wilkin, C.M. Su, R.G. Ford, C.J. Paul, Chromium-removal processes during groundwater remediation by a zero-valent iron permeable reactive barrier, Environ. Sci. Technol. 39 (2005) 4599–4605.
  • R.W. Puls, C.J. Paul, R.M. Powell, The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate contaminated groundwater: A field test, Appl. Geochem. 14 (1999) 989–1000.
  • D.W. Blowes, C.J. Ptacek, J.L. Jambor, In-situ remediation of Cr(VI) contaminated groundwater using permeable reactive walls: Laboratory studies, Environ. Sci. Technol. 31 (1997) 3348–3357.
  • C. Noubactep, G. Meinrath, B.J. Merkel, Investigating the mechanism of uranium removal by zero-valent iron, Environ. Chem. 2 (2005) 235–242.
  • S. Bang, M.D. Johnson, G.P. Korfiatis, X. Meng, Chemical reactions between arsenic and zero-valent iron in water, Water Res. 39 (2005) 763–770.
  • J.A. Lackovic, N.P. Nikolaidis, G.M. Dobbs, Inorganic arsenic removal by zero-valent iron, Environ. Eng. Sci. 17 (2000) 29–39.
  • R. Rangsivek, M.R. Jekel, Removal of dissolved metals by zerovalent iron (ZVI): Kinetics, equilibria, processes and implications for stormwater runoff treatment, Water Res. 39 (2005) 4153–4163.
  • C. Noubactep, S. Caré, F. Togue-Kamga, A. Schöner, P. Woafo, Extending service life of household water filters by mixing metallic iron with sand, Clean-Soil Air Water 38 (2010) 951–959.
  • C. Noubactep, A. Schöner, Fe0-based alloys for environmental remediation: Thinking outside the box, J. Hazard. Mater. 165 (2009) 1210–1214.
  • S.J. Morrison, P.S. Mushovic, P.L. Niesen, Early breakthrough of molybdenum and uranium in a permeable reactive barrier, Environ. Sci. Technol. 40 (2006) 2018–2024.
  • L. Li, C.H. Benson, E.M. Lawson, Impact of mineral fouling on hydraulic behaviour of permeable reactive barriers, Ground Water 43 (2005) 582–596.
  • S. Bilardi, P.S. Calabrò, S. Caré, N. Moraci, C. Noubactep, Effect of pumice and sand on the sustainability of granular iron beds for the removal of CuII, NiII, and ZnII, Clean-Soil Air Water 41 (2013) 835–843.
  • S. Caré, R. Crane, P.S. Calabrò, A. Ghauch, E. Temgoua, C. Noubactep, Modelling the permeability loss of metallic iron water filtration systems, Clean-Soil Air Water 41 (2012) 275–282.
  • A.S. Ruhl, N. Ünal, M. Jekel, Evaluation of two-component Fe(0) fixed bed filters with porous materials for reductive dechlorination, Chem. Eng. J. 209 (2012) 401–406.
  • M.S. Mak, P. Rao, I.M. Lo, Zero-valent iron and iron oxide-coated sand as a combination for removal of co-present chromate and arsenate from groundwater with humic acid, Environ. Pollut. 159 (2011) 377–382.
  • N. Moraci, P.S. Calabrò, Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers, J. Environ. Manage. 91 (2010) 2336–2341.
  • K. Komnitsas, G. Bartzas, I. Paspaliaris, Inorganic contaminant fate assessment in zero-valent iron treatment walls, Environ. Forensics 7 (2007) 207–217.
  • G. Bartzas, K. Komnitsas, I. Paspaliaris, Laboratory evaluation of Fe0 barriers to treat acidic leachates, Miner. Eng. 19 (2006) 505–514.
  • R. Rangsivek, M.R. Jekel, Development of an on-site Fe0 system for treatment of copper- and zinc-contaminated roof runoff, Int. J. Environ. Waste Manage. 3–4 (2011) 353–365.
  • K. Komnitsas, G. Bartzas, K. Fytas, I. Paspaliaris, Long-term efficiency and kinetic evaluation of ZVI barriers during clean-up of copper containing solutions, Miner. Eng. 20 (2007) 1200–1209.
  • S. Bilardi, R.T. Amos, D.W. Blowes, P.S. Calabrò, N. Moraci, Reactive transport modeling of ZVI column experiments for nickel remediation, Groundwater Monit. R. 33 (2013) 97–104.
  • J. Dries, L. Bastiaens, D. Springael, S. Kuypersc, Effect of humic acids on heavy metal removal by zero-valent iron in batch and continuous flow column systems, Water Res. 39 (2005) 3531–3540.
  • K.H. Head, G.P. Keeton, Permeability, shear strength & compressibility tests, in: K.H. Head, G.P. Keeton (Eds.), Manual of Soil Laboratory Testing, vol. 2, Whittles, Caithness, 2008, p. 480.
  • APHA, AWWA, WEF, Standard methods for the examination of water and wastewater, 21st ed., American Public Health Association, Washington, DC, 2005.
  • P.S. Calabrò, N. Moraci, P. Suraci, Estimate of the optimum weight ratio in zero-valent iron/pumice granular mixtures used in permeable reactive barriers for the remediation of nickel contaminated groundwater, J. Hazard. Mater. 207–208 (2012) 111–116.
  • R.M. Cornell, U. Schwertmann, The Iron Oxides, VCH VerlagsgesellschaftmbH, Weinheim, 1996, p. 573.
  • W. Stumm, J.J. Morgan, Aquatic Chemistry, 3rd ed., Wiley, New York, NY, 1996, p. 1022.
  • Gazzetta Ufficiale della Repubblica Italiana, Norme in materia ambientale, Poligrafico dello Stato, Roma, Gazzetta Ufficiale n. 88 del 14 aprile 2006 (in Italian).
  • J. Dries, L. Bastiaens, D. Springael, L. Diels, S.N. Agathos, Combined Removal of Chlorinated Ethenes and Heavy Metals in Zero-valent Iron Systems, Groundwater Quality: Natural and Enhanced Restoration of Groundwater Pollution, IAHS, Wallingford, no. 275, 2002, pp. 447–452.
  • N. Moraci, P.S. Calabrò, P. Suraci, Long-term efficiency of zero-valent iron – pumice granular mixtures for the removal of copper or nickel from groundwater, Soils Rocks 34 (2011) 129–137.
  • C.Y. Hu, S.L. Lo, Y.H. Liou, Y.W. Hsu, K. Shih, C.J. Lin, Hexavalent chromium removal from near natural water by copper-iron bimetallic particles, Water Res. 44 (2010) 3101–3108.
  • R. Pal, S.M. Rao, S. Sivachidambaram, Mitigation of chromium contamination by copper-ZVI bimetallic particles, J. Hazard. Toxic Radioact. Waste 17 (2013) 181–186.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.