149
Views
6
CrossRef citations to date
0
Altmetric
Articles

Catalytic wet hydrogen peroxide oxidation of phenolic compounds in coffee wastewater using Al–Fe-pillared clay extrudates

, , , &
Pages 647-654 | Received 17 Nov 2013, Accepted 26 Apr 2014, Published online: 02 Jun 2014

References

  • International Coffee Organization, The story of coffee, http://www.ico.org/coffee_story.asp ( accessed on 01.10.13).
  • Nescafé, Coffee production, http://www.nescafe.com/coffee_production_en_com.axcms, ( accessed on 01.10.13).
  • N. Rodríguez-Valencia, Estudio de un biosistema integrado para el postratamiento de las aguas residuales del café utilizando macrófitas acuáticas, PhD thesis, Universidad Politécnica de Valencia, Valencia, 2009.
  • G. Roa-Mejía, C.E. Oliveros-Tascún, J.R. Sanz-Uribe, J. Álvarez-Gallo, C.A. Ramírez-Gómez, J.R. Álvarez-Hernández, Desarrollo de la tecnología BECOLSUB para beneficio ecológico del café [Development of BECOLSUB technology for ecological processing of coffee], Avances Técnicos Cenicafé 238 (1997) 1–8.
  • H.N. Chanakya, A.A.P. De Alwis, Environmental issues and management in primary coffee processing, Process. Saf. Environ. Prot. 82 (2004) 291–300.10.1205/095758204323162319
  • D.A. Zambrano-Franco, N. Rodríguez-Valencia, U. López-Posada, P.A. Orozco-Restrepo, A.J. Zambrano-Giraldo, Tratamiento anaerobio de las aguas mieles del café [Anaerobic treatment of the honey waters from coffee], Boletín Técnico Cenicafé 29 (2006) 1–28.
  • J. Field, in: Universidad del Valle, Arranque y operación de sistemas de flujo ascedente con manto de lodos—UASB, Universidad del Valle-CVC, Santiago de Calí, 1987, pp. H1–H11.
  • R. Bello-Mendoza, M.F. Castillo-Rivera, Start-up of an anaerobic hybrid (UASB/filter) reactor treating wastewater from a coffee processing plant, Anaerobe 4 (1998) 219–225.10.1006/anae.1998.0171
  • F.R.L. Fia, A.T. Matos, A.C. Borges, R. Fia, P.R. Cecon, Treatment of wastewater from coffee bean processing in anaerobic fixed bed reactors with different support materials: Performance and kinetic modeling, J. Environ. Manage. 108 (2012) 14–21.10.1016/j.jenvman.2012.04.033
  • M. Selvamurugan, P. Doraisamy, M. Maheswari, An integrated treatment system for coffee processing wastewater using anaerobic and aerobic process, Ecol. Eng. 36 (2010) 1686–1690.10.1016/j.ecoleng.2010.07.013
  • A. Haddis, R. Devi, Effect of effluent generated from coffee processing plant on the water bodies and human health in its vicinity, J. Hazard. Mater. 152 (2008) 259–262.10.1016/j.jhazmat.2007.06.094
  • V. Matuk-Velasco, N. Rodríguez-Valencia, G.I. Puerta-Quintero, El impacto biológico de los efluentes del beneficio húmedo de café [The biological impact of the effluents from wet process of coffee], Cenicafé 48 (1997) 234–252.
  • N.R. Sanabria, R. Molina, S. Moreno, Development of pillared clays for wet hydrogen peroxide oxidation of phenol and its application in the posttreatment of coffee wastewater, Int. J. Photoenergy 2012 (2012) 1–17.10.1155/2012/864104
  • T. Zayas-Pérez, G. Geissler, F. Hernandez, Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes, J. Environ. Sci. 19 (2007) 300–305.10.1016/S1001-0742(07)60049-7
  • G. Busca, S. Berardinelli, C. Resini, L. Arrighi, Technologies for the removal of phenol from fluid streams: A short review of recent developments, J. Hazard. Mater. 160 (2008) 265–288.10.1016/j.jhazmat.2008.03.045
  • S. Perathoner, G. Centi, Wet hydrogen peroxide catalytic oxidation (WHPCO) of organic waste in agro-food and industrial streams, Top. Catal. 33 (2005) 207–224.10.1007/s11244-005-2529-x
  • C.B. Molina, J.A. Casas, A.H. Pizarro, J.J. Rodriguez, Pillared clays as green chemistry catalysts: Application to wasterwater treatment, in: J.P. Humphrey, D.E. Boyd (Eds.), Clay: Types, Properties and Uses, Nova Science Publishers, New York, NY, 2011, pp. 435–474 ( Chapter 16).
  • N.R. Sanabria, M.A. Centeno, R. Molina, S. Moreno, Pillared clays with Al–Fe and Al–Ce–Fe in concentrated medium: Synthesis and catalytic activity, Appl. Catal. A Gen. 356 (2009) 243–249.10.1016/j.apcata.2009.01.013
  • M. Luo, D. Bowden, P. Brimblecombe, Catalytic property of Fe–Al pillared clay for Fenton oxidation of phenol by H2O2, Appl. Catal. B Environ. 85 (2009) 201–206.10.1016/j.apcatb.2008.07.013
  • J.G. Carriazo, E. Guélou, J. Barrault, J.M. Tatibouët, S. Moreno, Catalytic wet peroxide oxidation of phenol over Al–Cu or Al–Fe modified clays, Appl. Clay. Sci. 22 (2003) 303–308.10.1016/S0169-1317(03)00124-8
  • J. Barrault, M. Abdellaoui, C. Bouchoule, A. Majesté, J.M. Tatibouët, A. Louloudi, N. Papayannakos, N.H. Gangas, Catalytic wet peroxide oxidation over mixed (Al–Fe) pillared clays, Appl. Catal. B Environ. 27 (2000) L225–L230.10.1016/S0926-3373(00)00170-3
  • J. Carriazo, E. Guélou, J. Barrault, J.M. Tatibouët, R. Molina, S. Moreno, Catalytic wet peroxide oxidation of phenol by pillared clays containing Al–Ce–Fe, Water. Res. 39 (2005) 3891–3899.10.1016/j.watres.2005.06.034
  • J.G. Carriazo, M.A. Centeno, J.A. Odriozola, S. Moreno, R. Molina, Effect of Fe and Ce on Al-pillared bentonite and their performance in catalytic oxidation reactions, Appl. Catal. A Gen. 317 (2007) 120–128.10.1016/j.apcata.2006.10.009
  • N.R. Sanabria, P. Ávila, M. Yates, S.B. Rasmussen, R. Molina, S. Moreno, Mechanical and textural properties of extruded materials manufactured with AlFe and AlCeFe pillared bentonites, Appl. Clay. Sci. 47 (2010) 283–289.10.1016/j.clay.2009.11.029
  • Café de origen Hacienda Venecia, Cultivo y beneficio, www.haciendavenecia.com, ( accessed on 05.09.13).
  • APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, DC, 2005, pp. 5.13–5.14.
  • V.L. Singleton, J.A. Rossi, Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents, Am. J. Enol. Vitic. 16 (1965) 144–158.
  • V.L. Singleton, R. Orthofer and R.M. Lamuela, Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent, Method. Enzymol. 299 (1999) 152–178.10.1016/S0076-6879(99)99017-1
  • T.-I. Lafka, A.E. Lazou, V.J. Sinanoglou, E.S. Lazos, Phenolic and antioxidant potential of olive oil mill wastes, Food Chem. 125 (2011) 92–98.10.1016/j.foodchem.2010.08.041
  • N.R. Sanabria, R. Molina, S. Moreno, Raschig rings based on pillared clays: Efficient reusable catalysts for oxidation of phenol, J. Adv. Oxid. Technol. 15 (2012) 117–124.
  • J. Madejová, P. Komadel, Baseline studies of the clay minerals society source clays: Infrared methods, Clays Clay Miner. 49 (2001) 410–432.10.1346/CCMN
  • J. Madejová, FTIR techniques in clay mineral studies, Vib. Spectrosc. 31 (2003) 1–10.10.1016/S0924-2031(02)00065-6
  • K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquérol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem. 57 (1985) 603–619.
  • S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity, Academic Press, New York, 1982, pp. 41–110.
  • M.J. Remy, A.C. Vieira-Coelho, G. Poncelet, Surface area and microporosity of 1.8 nm pillared clays from the nitrogen adsorption isotherm, Microporous Mater. 7 (1996) 287–297.10.1016/S0927-6513(96)00021-1
  • J.J. Su, B.Y. Liu, Y.C. Chang, Identifying an interfering factor on chemical oxygen demand (COD) determination in piggery wastewater and eliminating the factor by an indigenous Pseudomonas stutzeri strain, Lett. Appl. Microbiol. 33 (2001) 440–444.10.1046/j.1472-765X.2001.01027.x
  • R.A. Dobbs, R.T. Williams, Elimination of chloride interference in the chemical oxygen demand test, Anal. Chem. 35 (1963) 1064–1067.10.1021/ac60201a043
  • Y.W. Kang, M.-J. Cho, K.-Y. Hwang, Correction of hydrogen peroxide interference on standard chemical oxygen demand test, Water Res. 33 (1999) 1247–1251.10.1016/S0043-1354(98)00315-7
  • I. Talinli, G.K. Anderson, Interference of hydrogen peroxide on the standard COD test, Water Res. 26 (1992) 107–110.10.1016/0043-1354(92)90118-N
  • S. Caudo, G. Centi, C. Genovese, S. Perathoner, Copper- and iron-pillared clay catalysts for the WHPCO of model and real wastewater streams from olive milling production, Appl. Catal. B Environ. 70 (2007) 437–446.10.1016/j.apcatb.2006.01.031

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.