140
Views
9
CrossRef citations to date
0
Altmetric
Articles

Response surface methodology for optimization of 4-nitrophenol degradation by a heterogeneous Fenton-like reaction on nano-zero-valent iron

, &
Pages 2206-2213 | Received 23 Nov 2013, Accepted 20 Aug 2014, Published online: 10 Sep 2014

References

  • Z. She, M. Gao, C. Jin, Y. Chen, J. Yu, Toxicity and biodegradation of 2,4-dinitrophenol and 3-nitrophenol in anaerobic systems, Process Biochem. 40 (2005) 3017–3024.10.1016/j.procbio.2005.02.007
  • Available from: http://water.epa.gov/scitech/swguidance/standards/criteria/current/upload/nrwqc2009.pdf
  • L. Xu, J. Wang, A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol, J. Hazard. Mater. 186 (2011) 256–264.10.1016/j.jhazmat.2010.10.116
  • S.X. Zhang, X.L. Zhao, H.Y. Niu, Y.L. Shi, Y.Q. Cai, G.B. Jiang, Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds, J. Hazard. Mater. 167 (2009) 560–566.10.1016/j.jhazmat.2009.01.024
  • X.F. Xue, K. Hanna, M. Abdelmoula, N.S. Deng, Adsorption and oxidation of PCP on the surface of magnetite: Kinetic experiments and spectroscopic investigations, Appl. Catal., B 89 (2009) 432–440.10.1016/j.apcatb.2008.12.024
  • S.-P. Sun, A.T. Lemley, p-Nitrophenol degradation by a heterogeneous Fenton-like reaction on nano-magnetite: Process optimization, kinetics, and degradation pathways, J. Mol. Catal. A: Chem. 349 (2011) 71–79.10.1016/j.molcata.2011.08.022
  • R.C.C. Costa, F.C.C. Moura, J.D. Ardisson, J.D. Fabris, R.M. Lago, Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4 composites prepared by controlled reduction of iron oxides, Appl. Catal., B 83 (2008) 131–139.10.1016/j.apcatb.2008.01.039
  • T.-L. Lai, K.-F. Yong, J.-W. Yu, J.-H. Chen, Y.-Y. Shu, C.-B. Wang, High efficiency degradation of 4-nitrophenol by microwave-enhanced catalytic method, J. Hazard. Mater. 185 (2011) 366–372.10.1016/j.jhazmat.2010.09.044
  • A. Zhang, N. Wang, J. Zhou, P. Jiang, G. Liu, Heterogeneous Fenton-like catalytic removal of p-nitrophenol in water using acid-activated fly ash, J. Hazard. Mater. 201–202 (2012) 68–73.10.1016/j.jhazmat.2011.11.033
  • L.M. Cotoruelo, M.D. Marqués, F.J. Díaz, J. Rodríguez-Mirasol, J.J. Rodríguez, T. Cordero, Adsorbent ability of lignin-based activated carbons for the removal of p-nitrophenol from aqueous solutions, Chem. Engin. J. 184 (2012) 176–183.10.1016/j.cej.2012.01.026
  • H.-C. Tao, X.-Y. Wei, L.-J. Zhang, T. Lei, N. Xu, Degradation of p-nitrophenol in a BES-Fenton system based on limonite, J. Hazard. Mater. 254–255 (2013) 236–241.10.1016/j.jhazmat.2013.03.061
  • S.M. Tabatabaei, S. Dastmalchi, A. Mehrizad, P. Gharbani, Enhancement of 4-nitrophenol ozonation in water by nano zno catalyst, Iran. J. Environ. Health Sci. Eng. 8 (2011) 363–372.
  • P. Jiang, J. Zhou, A. Zhang, Y. Zhong, Electrochemical degradation of p-nitrophenol with different processes, J. Environ. Sci. 22 (2010) 500–506.10.1016/S1001-0742(09)60140-6
  • M.-M. Song, C. Branford-White, H.-L. Nie, L.-M. Zhu, Optimization of adsorption conditions of BSA on thermosensitive magnetic composite particles using response surface methodology, Colloids Surf., B 84 (2011) 477–483.10.1016/j.colsurfb.2011.02.002
  • R. Tabaraki, E. Heidarizadi, A. Benvidi, Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) peel antioxidants by response surface methodology, Sep. Purif. Technol. 98 (2012) 16–23.10.1016/j.seppur.2012.06.038
  • M.T. Izquierdo, A.M. de Yuso, R. Valenciano, B. Rubio, M.R. Pino, Influence of activated carbon characteristics on toluene and hexane adsorption: Application of surface response methodology, Appl. Surf. Sci. 264 (2013) 335–343.10.1016/j.apsusc.2012.10.023
  • A. Benvidi, M. Mazloum Ardakani, Subnanomolar determination of indium by adsorptive stripping differential pulse voltammetry using factorial design for optimization, Anal. Lett. 42 (2009) 2430–2443.10.1080/00032710903061154
  • C.B. Wang, W.X. Zhang, Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs, Environ. Sci. Technol. 31 (1997) 2154–2156.10.1021/es970039c
  • S. Jagadevan, M. Jayamurthy, P. Dobson, I.P. Thompson, A novel hybrid nano zerovalent iron initiated oxidation—Biological degradation approach for remediation of recalcitrant waste metalworking fluids, Water Res. 46 (2012) 2395–2404.10.1016/j.watres.2012.02.006
  • R.A. Crane, T.B. Scott, Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology, J. Hazard. Mater. 211–212 (2012) 112–125.10.1016/j.jhazmat.2011.11.073
  • Y. Zhang, Y. Li, J. Li, L. Hu, X. Zheng, Enhanced removal of nitrate by a novel composite: Nanoscale zero valent iron supported on pillared clay, Chem. Eng. J. 171 (2011) 526–531.
  • S.S. Khaloo, S. Fattahi, Enhancing decolorization of Eriochrome Blue Black R during nano-size zero-valent iron treatment using ultrasonic irradiation, Desalin. Water Treat. 52 (2014) 3403–3410.10.1080/19443994.2013.801322
  • S. Navalon, M. Alvaro, H. Garcia, Heterogeneous Fenton catalysts based on clays, silicas and zeolites, Appl. Catal., B 99 (2010) 1–26.10.1016/j.apcatb.2010.07.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.