123
Views
13
CrossRef citations to date
0
Altmetric
Articles

Effect of pipe corrosion product–goethite–on the formation of disinfection by-products during chlorination

, , , , &
Pages 553-561 | Received 03 Mar 2014, Accepted 25 Sep 2014, Published online: 14 Oct 2014

References

  • S.D. Richardson, M.J. Plewa, E.D. Wagner, R.S. Schoeny, D.M. Demarini, Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research, Mutat. Res./Rev. Mutation Res. 636 (2007) 178–242.10.1016/j.mrrev.2007.09.001
  • T.A. Beller, J.J. Lichtenberg, R.C. Kroner, Occurrence of organohalides in chlorinated drinking waters, J. Am. Water Works Assn. 66 (1974) 703–706.
  • F.J. Bove, J. Esmart, E.M. Dufficy, J.E. Savrin, Public drinking water contamination and birth outcomes, Am. J. Epidemiol. 141 (1995) 850–862.
  • D.T. Wigle, Safe drinking water: A public health challenge, Chronic Dis. Can. 19 (1998) 103–107.
  • P. Sarin, V.L. Snoeyink, J. Bebee, K.K. Jim, M.A. Beckett, W.M. Kriven, J.A. Clement, Iron release from corroded iron pipes in drinking water distribution systems: Effect of dissolved oxygen, Water Res. 38 (2004) 1259–1269.10.1016/j.watres.2003.11.022
  • X. Zhang, Z. Mi, Y. Wang, S. Liu, Z. Niu, P. Lu, J. Wang, J. Gu, C. Chen, A red water occurrence in drinking water distribution systems caused by changes in water source in Beijing, China: Mechanism analysis and control measures, Front. Environ. Sci. Eng. 8 (2014) 417–426.10.1007/s11783-013-0558-4
  • O.H. Tuovinen, D.M. Mair, J. Banovic, Chlorine demand and trihalomethane formation by tubercles from cast iron water mains, Environ. Technol. 5 (1984) 97–108.10.1080/09593338409384258
  • M.W. LeChevallier, C.D. Lowry, R.G. Lee, D.L. Gibbon, Examining the relationship between iron corrosion and the disinfection of biofilm bacteria, J. Am. Water Works Assn. 85 (1993) 111–123.
  • T.E. Larson, Report on loss in carrying capacity of water mains, J. Am. Water Works Assn. 47 (1955) 1061–1072.
  • J.A. Sawicki, M.E. Brett, Mössbauer study of corrosion products from a CANDU secondary system, Nucl. Instrum. Methods Phys. Res., Sect. B 76 (1993) 254–257.
  • Ö. Özdemir, D.J. Dunlop, Intermediate magnetite formation during dehydration of goethite, Earth Planet. Sci. Lett. 177 (2000) 59–67.10.1016/S0012-821X(00)00032-7
  • J. Gerth, G.W. Brümmer, K.G. Tiller, Retention of Ni, Zn and Cd by Si–associated goethite, Z. Pflanzenernährung Bodenkunde 156 (1993) 123–129.10.1002/(ISSN)1522-2624
  • D. Peak, D.L. Sparks, Mechanisms of selenate adsorption on iron oxides and hydroxides, Environ. Sci. Technol. 36 (2002) 1460–1466.10.1021/es0156643
  • H.I. Adegoke, F.A. Adekola, O.S. Fatoki, B.J. Ximba, Sorptive interaction of oxyanions with iron oxides: A review, Pol. J. Environ. Stud. 22 (2013) 7–24.
  • V. Barrón, J. Torrent, Surface hydroxyl configuration of various crystal faces of hematite and goethite, J. Colloid Interface Sci. 177 (1996) 407–410.10.1006/jcis.1996.0051
  • L. Sigg, W. Stumm, The interaction of anions and weak acids with the hydrous goethite (α-FeOOH) surface, Colloids Surf. 2 (1981) 101–117.10.1016/0166-6622(81)80001-7
  • B.R. Petigara, N.V. Blough, A.C. Mignerey, Mechanisms of hydrogen peroxide decomposition in soils, Environ. Sci. Technol. 36 (2002) 639–645.10.1021/es001726y
  • A.L.T. Pham, C. Lee, F.M. Doyle, D.L. Sedlak, A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values, Environ. Sci. Technol. 43 (2009) 8930–8935.10.1021/es902296k
  • J.J. Pignatello, E. Oliveros, A. MacKay, Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry, Crit. Rev. Env. Sci. Technol. 36 (2006) 1–84.10.1080/10643380500326564
  • W.P. Kwan, B.M. Voelker, Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite, Environ. Sci. Technol. 36 (2002) 1467–1476.10.1021/es011109p
  • N. Kishimoto, T. Kitamura, M. Kato, H. Otsu, Reusability of iron sludge as an iron source for the electrochemical Fenton-type process using Fe2+/HOCl system, Water Res. 47 (2013) 1919–1927.10.1016/j.watres.2013.01.021
  • C.R. Evanko, D.A. Dzombak, Influence of structural features on sorption of NOM-analogue organic acids to goethite, Environ. Sci. Technol. 32 (1998) 2846–2855.10.1021/es980256t
  • J.E. Greenleaf, L. Cumbal, I. Staina, A.K. SenGupta, Abiotic As (III) oxidation by hydrated Fe(III) oxide (HFO) microparticles in a plug flow columnar configuration, Process Saf. Environ. Prot. 81 (2003) 87–98.
  • S.W. Krasner, Chemistry of disinfection by-product formation. In: Formation and Control of Disinfection by-Products in Drinking Water, American Water Works Association, Denver, CO, 1999, pp. 27–51
  • APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater, twentieth ed., American Public Health Association, Washington, DC, 1998.
  • D. Munch, D. Hautman, Method 551.1: Determination of Chlorination Disinfection Byproducts, Chlorinated Solvents, and Halogenated Pesticides/Herbicides in Drinking Water by Liquid–Liquid Extraction and Gas Chromatography with Electron-Capture Detection, USEPA, Cincinnati, OH, 1995.
  • B. Xu, F.X. Tian, C.Y. Hu, Y.L. Lin, S.J. Xia, R. Rong, D.P. Li, Chlorination of chlortoluron: Kinetics, pathways and chloroform formation, Chemosphere 83 (2011) 909–916.10.1016/j.chemosphere.2011.02.050
  • H. Luo, C.F. Dong, K. Xiao, X.G. Li, Characterization of passive film on 2205 duplex stainless steel in sodium thiosulphate solution, Appl. Surf. Sci. 258 (2011) 631–639.10.1016/j.apsusc.2011.06.077
  • S. Liu, Z. Zhu, Y. Qiu, J. Zhao, Effect of ferric and bromide ions on the formation and speciation of disinfection byproducts during chlorination, J. Environ. Sci. China 23 (2011) 765–772.10.1016/S1001-0742(10)60474-3
  • P.H. Chen, R.J. Watts, Determination of rates of hydroxyl radical generation in mineral-catalyzed Fenton-like oxidation, J. Chinese Inst. Environ. Eng. 10 (2000) 201–208.
  • A. Hounslow, Water Quality Data: Analysis and Interpretation, Lewis, Boca Raton, FL, 1995.
  • X. Liu, Z. Chen, L. Wang, J. Shen, Effects of metal ions on THMs and HAAs formation during tannic acid chlorination, Chem. Eng. J. 211 (2012) 179–185.
  • J.G. Hering, W. Stumm, Oxidative and reductive dissolution of minerals, Rev. Mineral Geochem. 23 (1990) 427–465.
  • A.T. Stone, K.L. Godtfredsen, B. Deng, Sources and Reactivity of Reductants Encountered in Aquatic Environments, Chemistry of Aquatic Systems: Local and Global Perspectives, Springer, Dordrecht, 1994, pp. 337–374.
  • C. Bolm, J. Legros, J.L. Paih, L. Zani, Iron-Catalyzed Reactions in Organic Synthesis, Chem. Rev. 104 (2004) 6217–6254.10.1021/cr040664h
  • C.J. Gabelich, J.C. Frankin, F.W. Gerringer, K.P. Ishida, I.H. Suffet, Enhanced oxidation of polyamide membranes using monochloramine and ferrous iron, J. Membr. Sci. 258 (2005) 64–70.10.1016/j.memsci.2005.02.034
  • K.Z. Hassan, K.C. Bower, C.M. Miller, Iron oxide enhanced chlorine decay and disinfection by-product formation, J. Environ. Eng. 132 (2006) 1609–1616.10.1061/(ASCE)0733-9372(2006)132:12(1609)
  • L.A. Rossman, R.A. Brown, P.C. Singer, J.R. Nuckols, DBP formation kinetics in a simulated distribution system, Water Res. 35 (2001) 3483–3489.10.1016/S0043-1354(01)00059-8
  • M.R. Schock, Internal corrosion and deposition control, in: F.W. Pontius (Ed.), Water Quality and Treatment, McGraw-Hill, New York, NY, 1990.
  • M.W. LeChevallier, T.M. Babcock, R.G. Lee, Examination and characterization of distribution system biofilms, Appl. Environ. Microbiol. 53 (1987) 2714–2724.
  • D.B. Babcock, P.C. Singer, Chlorination and coagulation of humic and fulvic acids, J. AWWA 71 (1979) 149–152.
  • W. Chu, N. Gao, S.W. Krasner, M.R. Templeton, D. Yin, Formation of halogenated C-, N-DBPs from chlor (am) ination and UV irradiation of tyrosine in drinking water, Environ. Pollut. 161 (2012) 8–14.10.1016/j.envpol.2011.09.037
  • D.A. Reckhow, P.C. Singer, Mechanisms of organic halide formation during fulvic acid chlorination and implications with respect to preozonation, Water Chlorin. Environ. Impact Health Effects 5 (1985) 1229–1257.
  • M.L. Trehy, R.A. Yost, C.J. Miles, Chlorination byproducts of amino acids in natural waters, Environ. Sci. Technol. 20 (1986) 1117–1122.10.1021/es00153a006
  • V. Glezer, B. Harris, N. Tal, B. Iosefzon, O. Lev, Hydrolysis of haloacetonitriles: Linear free energy relationship, kinetics and products, Water Res. 33 (1999) 1938–1948.10.1016/S0043-1354(98)00361-3
  • M.D. Pizzigallo, P. Ruggiero, C. Crecchio, G. Mascolo, Oxidation of chloroanilines at metal oxide surfaces, J. Agric. Food Chem. 46 (1998) 2049–2054.
  • M. Rebhurt, L. Heller-Grosman, J. Manka, D. Kirnet, B. Limoni, Trihalomethane formation and distribution in bromide-rich and ammonia-containing lake water, Water Chlorin. 6 (1990) 664–680.
  • H.M. Shukairy, R.J. Miltner, R.S. Summers, Bromide’s effect on DBP formation, speciation and control: Part 2, biotreatment, J. AWWA 87 (1995) 71–82.
  • E.E. Chang, Y.P. Lin, P.C. Chiang, Effects of bromide on the formation of THMs and HAAs, Chemosphere 43 (2001) 1029–1034.10.1016/S0045-6535(00)00210-1
  • D.A. Reckhow, T.L. Platt, A. MacNeill, J.N. McClellan, Formation and degradation of DCAN in drinking water, J. Water Suppl. Res. Technol. AQUA 50 (2001) 1–13.
  • B. Gu, J. Schmitt, Z. Chen, L. Liang, J.F. McCarthy, Adsorption and desorption of natural organic matter on iron oxide: Mechanisms and models, Environ. Sci. Technol. 28 (1994) 38–46.10.1021/es00050a007
  • G.V. Korshin, M.M. Benjamin, R.S. Sletten, Adsorption of natural organic matter (NOM) on iron oxide: Effects on NOM composition and formation of organo-halide compounds during chlorination, Water Res. 31 (1997) 1643–1650.10.1016/S0043-1354(97)00007-9
  • R.M. Ravenelle, F.Z. Diallo, J.C. Crittenden, C. Sievers, Effects of metal precursors on the stability and observed reactivity of Pt/γ-Al2O3 catalysts in aqueous phase reactions, Chem. Cat. Chem. 4 (2012) 492–494.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.