101
Views
30
CrossRef citations to date
0
Altmetric
Articles

Degradation and mineralization of diazinon pesticide in UVC and UVC/TiO2 process

, &
Pages 3782-3790 | Received 27 Feb 2014, Accepted 04 Nov 2014, Published online: 08 Dec 2014

References

  • V.A. Sakkas, A. Dimou, K. Pitarakis, G. Mantis, T. Albanis, TiO2 photocatalyzed degradation of diazinon in an aqueous medium, Environ. Chem. Lett. 3 (2005) 57–61.10.1007/s10311-004-0091-6
  • H. Shemer, K.G. Linden, Degradation and by-product formation of diazinon in water during UV and UV/H2O2 treatment, J. Hazard. Mater. 136 (2006) 553–559.10.1016/j.jhazmat.2005.12.028
  • Q. Zhang, S.O. Pehkonen, Oxidation of diazinon by aqueous chlorine: Kinetics, mechanisms, and product studies, J. Agric. Food. Chem. 47 (1999) 1760–1766.10.1021/jf981004e
  • P.H. Howard, Handbook of Environmental Fate and Exposure Data for Organic Chemicals, Lewis Publishers Inc., Chelsea, MI, 1991.
  • I.K. Konstantinou, T.M. Sakellarides, V.A. Sakkas, T.A. Albanis, Photocatalytic degradation of selected s-triazine herbicides and organophosphorus insecticides over aqueous TiO2 suspensions, Environ. Sci. Technol. 35 (2000) 398–405.
  • M.D. Labas, C.A. Martín, A.E. Cassano, Kinetics of bacteria disinfection with UV radiation in an absorbing and nutritious medium, Chem. Eng. J. 114 (2005) 87–97.10.1016/j.cej.2005.09.013
  • V.N. Kouloumbos, D.F. Tsipi, A.E. Hiskia, D. Nikolic, R.B. Breemen, Identification of photocatalytic degradation products of diazinon in TiO2 aqueous suspensions using GC/MS/MS and LC/MS with quadrupole time-of-flight mass spectrometry, J. Am. Soc. Mass. Spectrom. 14 (2003) 803–817.10.1016/S1044-0305(03)00333-7
  • A. Derbalah, A. Ismail, Remediation technology of diazinon and malathion residues in aquatic system, Environ. Prot. Eng. 39 (2013) 135–147.
  • D. LI, J. Qu, The progress of catalytic technologies in water purification: A review, J. Environ. Sci. 21 (2009) 713–719.10.1016/S1001-0742(08)62329-3
  • S.X. Liu, Z.P. Qu, X.W. Han, C.L. Sun, A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide, Catal. Today 93–95 (2004) 877–884.10.1016/j.cattod.2004.06.097
  • A.C. Affam, M. Chaudhuri, Degradation of pesticides chlorpyrifos, cypermethrin and chlorothalonil in aqueous solution by TiO2 photocatalysis, J. Environ. Manage. 130 (2013) 160–165.10.1016/j.jenvman.2013.08.058
  • M.-S. Shirzad Siboni, M.T. Samadi, J.K. Yang, S.M. Lee, Photocatalytic removal of Cr(VI) and Ni(II) by UV/TiO2: Kinetic study, Desalin. Water Treat. 40(1–3) (2012) 77–83.10.1080/19443994.2012.671144
  • J.K. Yang, S.M. Lee, M. Farrokhi, O. Giahi, M-S. Shirzad Siboni, Photocatalytic removal of Cr(VI) with illuminated TiO2, Desalin. Water Treat. 46(1–3) (2012) 375–380.10.1080/19443994.2012.677564
  • O. Autin, J. Hart, P. Jarvis, J. MacAdam, S.A. Parsons, B. Jefferson, Comparison of UV/H2O2 and UV/TiO2 for the degradation of metaldehyde: Kinetics and the impact of background organics, Water Res. 46 (2012) 5655–5662.10.1016/j.watres.2012.07.057
  • X. Zhu, C. Yuan, Y. Bao, J. Yang, Y. Wu, Photocatalytic degradation of pesticide pyridaben on TiO2 particles, J. Mol. Catal. A: Chem. 229 (2005) 95–105.10.1016/j.molcata.2004.11.010
  • D.A. Lambropoulou, I.K. Konstantinou, T.A. Albanis, A.R. Fernández-Alba, Photocatalytic degradation of the fungicide Fenhexamid in aqueous TiO2 suspensions: Identification of intermediates products and reaction pathways, Chemosphere 83 (2011) 367–378.10.1016/j.chemosphere.2010.12.006
  • R.A. Doong, W.H. Chang, Photoassisted titanium dioxide mediated degradation of organophosphorus pesticides by hydrogen peroxide, J. Photochem. Photobiol., A 107 (1997) 239–244.10.1016/S1010-6030(96)04579-0
  • G. Moussavi, H. Hosseini, A. Alahabadi, The investigation of diazinon pesticide removal from contaminated water by adsorption onto NH4Cl-induced activated carbon, Chem. Eng. J. 214 (2013) 172–179.10.1016/j.cej.2012.10.034
  • B. Idriss, P.V. Kamat, Capped semiconductor colloids. Synthesis and photoelectrochemical behavior of TiO2capped SnO2 nanocrystallites, J. Phys. Chem. 99 (1995) 9182–9188.
  • A. Akyol, H.C. Yatmaz, M. Bayramoglu, Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions, Appl. Catal., B: Environ. 54 (2004) 19–24.10.1016/j.apcatb.2004.05.021
  • S. Ahmed, M.G. Rasul, W. Martens, R. Brown, M.A. Hashib, Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments, Desalination 261 (2010) 3–18.10.1016/j.desal.2010.04.062
  • N. Daneshvar, S. Aber, M.S. Seyed Dorraji, A.R. Khataee, M.H. Rasoulifard, Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light, Sep. Purif. Technol. 58 (2007) 91–98.10.1016/j.seppur.2007.07.016
  • N. Kashif, F. Ouyang, Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2, J. Environ. Sci. 21 (2009) 527–533.10.1016/S1001-0742(08)62303-7
  • S.K. Pardeshi, A.B. Patil, A simple route for photocatalytic degradation of phenol in aqueous zinc oxide suspension using solar energy, Sol. Energy 82 (2008) 700–705.10.1016/j.solener.2008.02.007
  • C.H. Chiou, R.S. Juang, Photocatalytic degradation of phenol in aqueous solutions by Pr-doped TiO2 nanoparticles, J. Hazard. Mater. 149 (2007) 1–7.10.1016/j.jhazmat.2007.03.035
  • A.K. Sharma, R.K. Tiwari, M.S. Gaur, Nanophotocatalytic UV degradation system for organophosphorus pesticides in water samples and analysis by Kubista model, Arabian J. Chem. (in press).
  • V.S. Kouloumbos, D.F. Tsipi, A.E. Hiskia, D. Nikolic, R.B. Breemen, Identification of photocatalytic degradation products of diazinon in TiO2 aqueous suspensions using GC/MS/MS and LC/MS with quadrupole time-of-flight mass spectrometry, J. Am. Soc. Mass. Spectrom. 14 (2003) 803–817.10.1016/S1044-0305(03)00333-7
  • K.V. Kumar, K. Porkodi, F. Rocha, Langmuir-Hinshelwood kinetics—A theoretical study, Catal. Commun. 9 (2008) 82–84.10.1016/j.catcom.2007.05.019
  • G. Moussavi, S. Talebi, M. Farokhi, R.M. Mojtabaee Sabouti, Removal of ammonium from water by adsorption onto synthetic zeolites NaA and NaX: a comparative parametric, kinetic, and equilibrium study, Desalin. Water Treat. 51 (2013) 5710–5720.10.1080/19443994.2012.760111
  • J.R. Bolton, K.G. Bircger, W. Tumas, C.A. Tolman, Figures of merit for the technical development and application of advanced oxidation technologies for both electric and solar-derived systems, Pure Appl. Chem. 73 (2001) 627–637.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.