78
Views
10
CrossRef citations to date
0
Altmetric
Articles

Biodegradation of phenol with chromium (VI) reduction by the Pseudomonas sp. strain JF122

&
Pages 3544-3551 | Received 12 Feb 2014, Accepted 06 Nov 2014, Published online: 08 Dec 2014

References

  • A. Yassi, E. Nieboer, Carcinogenicity of chromium compounds, in: J.O. Nriagu, E. Nieboer (Eds.), Chromium in Natural and Human Environments, Wiley-Interscience Publications, New York, NY, 1988, pp. 443–495.
  • F.A.O. Camargo, B.C. Okeke, F.M. Bentoa, W.T. Frankenberger, Diversity of chromium-resistant bacteria isolated from soils contaminated with dichromate, Appl. Soil Ecol. 29 (2005) 193–202.
  • L. Morales-Barrera, F.d.M. Guillén-Jiménez, A. Ortiz-Moreno, T.L. Villegas-Garrido, A. Sandoval-Cabrera, C.H. Hernández-Rodríguez, E. Cristiani-Urbina, Isolation, identification and characterization of a Hypocrea tawa strain with high Cr(VI) reduction potential, Biochem. Eng. J. 40 (2008) 284–292.
  • J.M. Chen, O.J. Hao, Microbial chromium (VI) reduction, Crit. Rev. Environ. Sci. Technol. 28 (1998) 219–251.
  • S. Dey, A.K. Paul, Optimization of cultural conditions for growth associated chromate reduction by Arthrobacter sp. SUK 1201 isolated from chromite mine overburden, J. Hazard. Mater. 213–214 (2012) 200–206.
  • M. Edalatmanesh, M. Mehrvar, R. Dhib, Optimization of phenol degradation in a combined photochemical–biological wastewater treatment system, Chem. Eng. Res. Des. 86 (2008) 1243–1252.
  • P. Kumaran, Y.L. Paruchuri, Kinetics of phenol biotransformation, Water Res. 31 (1997) 11–22.
  • C.F. Yang, C.M. Lee, Enrichment, isolation, and characterization of phenol-degrading Pseudomonas resinovorans strain P-1 and Brevibacillus sp. strain P-6, Int. Biodeter. Biodegr. 59 (2007) 206–210.
  • E. Giti, H. Mehdi, G. Nasser, Development of a microtitre plate method for determination of phenol utilization, biofilm formation and respiratory activity by environmental bacterial isolates, Int. Biodeter. Biodegr. 56 (2005) 231–235.
  • J.H. Kim, K.K. Oh, S.T. Lee, S.W. Kim, S.I. Hong, Biodegradation of phenol and chlorophenols with defined mixed culture in shake-flasks and a packed bed reactor, Proc. Biochem. 37 (2002) 1367–1373.
  • A. Banerjee, A.K. Ghoshal, Phenol degradation performance by isolated Bacillus cereus immobilized in alginate, Int. Biodeter. Biodegr. 65 (2011) 1052–1060.
  • R.S. Juang, S.Y. Tsai, Growth kinetics of Pseudomonas putida in biodegradation of single and mixed phenol and sodium salicylate, Biochem. Eng. J. 31 (2006) 133–140.
  • M. Shourian, K.A. Noghabi, H.S. Zahiri, T. Bagheri, G. Karballaei, M. Mollaei, I. Rad, S. Ahadi, J. Raheb, H. Abbasi, Efficient phenol degradation by a newly characterized Pseudomonas sp. SA01 isolated from pharmaceutical wastewaters, Desalination 246 (2009) 577–594.
  • Y. Wang, Y. Tian, B. Han, H.B. Zhao, J.N. Bi, B.L. Cai, Biodegradation of phenol by free and immobilized Acinetobacter sp. strain PD12, J. Environ. Sci. 19 (2007) 222–225.
  • A. Fialová, E. Boschke, T. Bley, Rapid monitoring of the biodegradation of phenol-like compounds by the yeast Candida maltosa using BOD measurements, Int. Biodeter. Biodegr. 54 (2004) 69–76.
  • Y. Jiang, J. Wen, H. Li, S. Yang, Z. Hu, The biodegradation of phenol at high concentration by the yeast Candida tropicalis, Biochem. Eng. J. 24 (2005) 243–247.
  • H. Liu, Q.J. Yu, G. Wang, F. Ye, Y. Cong, Biodegradation of phenol at high concentration by a novel yeast Trichosporon montevideense PHE1, Proc. Biochem. 46 (2011) 1678–1681.
  • R.J. Varma, B.G. Gaikwad, Rapid and high biodegradation of phenols catalyzed by Candida tropicalis NCIM 3556 cells, Enzyme. Microb. Technol. 43 (2008) 431–435.
  • K.T. Semple, R.B. Cain, Degradation of phenol and its methylated homologues by Ochromonas danica, Fems, Microbiol. Lett. 152 (1997) 133–139.
  • A.L. Leitão, M.P. Duarte, J.S. Oliveira, Degradation of phenol by a halotolerant strain of Penicillium chrysogenum, Int. Biodeter. Biodegr. 59 (2007) 220–225.
  • I. Stoilova, A. Krastanov, V. Stanchev, D. Daniel, M. Gerginova, Z. Alexieva, Biodegradation of high amounts of phenol, catechol, 2,4-dichlorophenol and 2,6-dimethoxyphenol by Aspergillus awamori cells, Enzyme. Microbiol. Technol. 39 (2006) 1036–1041.
  • L. Wang, Y. Li, P. Yu, Z. Xie, Y. Luo, Y. Lin, Biodegradation of phenol at high concentration by a novel fungal strain Paecilomyces variotii JH6, J. Hazard. Mater. 183 (2010) 366–371.
  • A. Gładysz-Płaska, M. Majdan, S. Pikus, D. Sternik, Simultaneous adsorption of chromium (VI) and phenol on natural red clay modified by HDTMA, Chem. Eng. J. 179 (2012) 140–150.
  • Z. Aksu, F. Gönen, Binary biosorption of phenol and Cr(VI) onto immobilized activated sludge in a packed bed: prediction of kinetic parameters and breakthrough curves, Sep. Purif. Technol. 49 (2006) 205–216.
  • Y.G. Liu, C. Pan, W.B. Xia, G.M. Zeng, M. Zhou, Y.Y. Liu, J. Ke, C. Huang, Simultaneous removal of Cr(VI) and phenol in consortium culture of Bacillus sp. and Pseudomonas putida Migula (CCTCC AB92019), Trans. Nonferrous. Met. Soc. China 18 (2008) 1014–1020.
  • E.M. Nkhalambayausi-Chirwa, Y.T. Wang, Simultaneous chromium (VI) reduction and phenol degradation in a fixed-film coculture bioreactor: Reactor performance, Water Res. 35 (2001) 1921–1932.
  • C. Quintelas, E. Sousa, F. Silva, S. Neto, T. Tavares, Competitive biosorption of ortho-cresol, phenol, chlorophenol and chromium(VI) from aqueous solution by a bacterial biofilm supported on granular activated carbon, Proc. Biochem. 41 (2006) 2087–2091.
  • G. Tziotzios, E. Dermou, D. Politi, D.V. Vayenas, Simultaneous phenol removal and biological reduction of hexavalent chromium in a packed-bed reactor, J. Chem. Technol. Biotechnol. 83 (2008) 829–835.
  • H. Shen, Y.T. Wang, Simultaneous chromium reduction and phenol degradation in a coculture of Escherichia coli ATCC 33456 and Pseudomonas putida DMP-1, Appl. Environ. Microbiol. 61 (1995) 2754–2758.
  • Y.T. Wang, E.M. Chirwa, Simultaneous removal of Cr(VI) and phenol in chemostat culture of E. coli ATCC 33456 and P. putida DMP-1, Water Sci. Technol. 38 (1998) 113–119.
  • L. Wang, X. Jiang, Plasma-induced reduction of chromium (VI) in an aqueous solution, Environ. Sci. Technol. 42 (2008) 8492–8497.
  • V. Somasundaram, L. Philip, S.M. Bhallamudi, Experimental and mathematical modeling studies on Cr(VI) reduction by CRB, SRB and IRB, individually and in combination, J. Hazard. Mater. 172 (2009) 606–617.
  • China, EPA., National Environment Protection Agency, PR China, Standard Methods for the Examination of Water and Wastewater, fourth ed., China Environmental Science Press, Beijing, 2002.
  • E.N. Chirwa, Y.T. Wang, Simultaneous chromium (VI) reduction and phenol degradation in an anaerobic consortium of bacteria, Water Res. 34 (2000) 2376–2384.
  • H. Ohtake, E. Fujii, K. Toda, A survey of effective electron-donors for reduction of toxic hexavalent chromium by Enterobacter cloacae (strain HO1), J. Gen. Appl. Microbiol. 36 (1990) 203–208.
  • H. Song, Y. Liu, W. Xu, G. Zeng, N. Aibibu, L. Xu, B. Chen, Simultaneous Cr(VI) reduction and phenol degradation in pure cultures of Pseudomonas aeruginosa CCTCC AB91095, Bioresour. Technol. 100 (2009) 5079–5084.
  • G.M. Zaitsev, J.S. Uotilia, I.V. Tsitko, A.G. Lobanov, M.S. Salkinoja-Salonen, Utilization of halogenated benzenes, phenols, and benzoates by Rhodococcus opacus GM-14, Appl. Environ. Microbiol. 61 (1995) 4191–4201.
  • J. Juvera-Espinosa, L. Morales-Barrera, E. Cristiani-Urbina, Isolation and characterization of a yeast strain capable of removing Cr(VI), Enzyme. Microbiol. Technol. 40 (2006) 114–121.
  • F. Ampe, D. Leonard, N.D. Lindley, Repression of phenol catabolism by organic acids in Ralstonia eutropha, Appl. Environ. Microbiol. 64 (1998) 1–6.
  • R. Bencheikh-Latmani, A. Obraztsova, M.R. Mackey, M.H. Ellisman, B.M. Tebo, Toxicity of Cr(III) to Shewanella sp. strain MR-4 during Cr(VI) reduction, Environ. Sci. Technol. 41 (2007) 214–220.
  • H. Shen, Y.T. Wang, Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456, Appl. Environ. Microbiol. 59 (1993) 3771–3777.
  • Y. Ishibashi, C. Cervantes, S. Silver, Chromium reduction in Pseudomonas putida, Appl, Environ. Microbiol. 56 (1990) 2268–2270.
  • L.J. Buerge, S.J. Hug, Influence of organic ligands on chromium (VI) reduction by iron, Environ. Sci. Technol. 32 (1998) 2092–2099.
  • G.J. Puzon, J.N. Petersen, A.G. Roberts, D.M. Kramer, L. Xun, A bacterial flavin reductase system reduces chromate to a soluble chromium (III)-NAD+ complex, Biochem. Biophys. Res. Commun. 294 (2002) 76–81.
  • G.J. Puzon, A.G. Roberts, D.M. Kramer, L. Xun, Formation of soluble organo-chromium(III) complexes after chromate reduction in the presence of cellular organics, Environ. Sci. Technol. 39 (2005) 2811–2817.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.