81
Views
6
CrossRef citations to date
0
Altmetric
Articles

Synergy effect in the photocatalytic degradation of textile dyeing waste water by using microwave combustion synthesized nickel oxide supported activated carbon

, , &
Pages 3766-3781 | Received 19 Jul 2014, Accepted 05 Nov 2014, Published online: 06 Dec 2014

References

  • O.T. Can, COD removal from fruit-juice production wastewater by electro oxidation electro coagulation and electro-Fenton processes, Desalin. Water Treat. 52 (2014) 65–73.
  • P. Kumar, R. Agnihotri, K.L. Wasewar, H. Uslu, C. Yoo, Status of adsorptive removal of dye from textile industry effluent, Desalin. Water Treat. 50 (2012) 226–244.
  • B. Kus, M. Johir, J. Kandasamy, S. Vigneswaran, H. Shon, R. Sleigh, G. Moody, Performance of granular medium filtration and membrane filtration in treating storm water for harvesting and reuse, Desalin. Water Treat. 45 (2012) 120–127.
  • S.B.A. Shammari, S.B. Hamad, A.A. Saffar, A.A. Sairafi, Efficiency of membrane bioreactor system in treating primary treated wastewater in Kuwait, Desalin. Water Treat. 36 (2011) 75–80.
  • M. Mahmoud, A. Tawfik, F. Samhan, F.E. Gohary, Sewage treatment using an integrated system consisting of anaerobic hybrid reactor (AHR) and down flow hanging sponge (DHS), Desalin. Water Treat. 4 (2009) 168–176.
  • B. Lodha, S. Chaudhari, Optimization of Fenton-biological treatment scheme for the treatment of aqueous dye solutions, J. Hazard. Mater. 148 (2007) 459–466.
  • Y. Du, M. Qiu, Comparative study of advanced oxidation for textile wastewater, Desalin. Water Treat. 51 (2013) 5954–5958.
  • P. Bansal, N. Bhullar, D. Sud, Studies on photodegradation of malachite green using TiO2/ZnO photocatalyst, Desalin. Water Treat. 12 (2009) 108–113.
  • M. Gao, G. Zhang, X. Wang, F. Yang, The bromamine acid removal from aqueous solution using electro-Fenton and Fenton systems, Desalin. Water Treat. 47 (2012) 157–162.
  • S. Chen, Y. Yang, M. Ji, W. Liu, Preparation, characterisation and activity evaluation of CaCO3/ZnO photocatalyst, Desalin. Water Treat. 6 (2011) 324–336.
  • S. Chen, M. Ji, Y. Yang, W. Liu, Preparation and characterisation of AgIn(WO4)2 photocatalyst with high photoreduction activity, Desalin. Water Treat. 7 (2012) 98–108.
  • W. Zhou, X. Yu, Use of Sr2Bi2O5 as photocatalyst for the degradation of acid red G, Desalin. Water Treat. 30 (2011) 295–299.
  • B. Amarsanaa, J.Y. Park, A. Figoli, E. Drioli, Optimum operating conditions in hybrid water treatment process of multi-channel ceramic MF and polyether sulfone beads loaded with photocatalyst, Desalin. Water Treat. 51 (2013) 5260–5267.
  • D. Adler, J. Feinleib, Electrical and optical properties of narrow band materials, Phys. Rev. B. 2 (1970) 3112–3134.
  • H. Sato, T. Minami, S. Takata, T. Yamada, Transparent conducting p-type NiO thin films prepared by magnetron sputtering, Thin Solid Films 236 (1993) 27–31.
  • Y.M. Lu, W.S. Hwang, J.S. Yang, H.C. Chuang, Properties of nickel oxide thin films deposited by RF reactive magnetron sputtering, Thin Solid Films 420–421 (2002) 54–61.
  • Y.N. Ju, J.R. Lead, Manufactured nanoparticles: An overview of their chemistry interactions and potential environmental implications, Sci. Total. Environ. 400 (2008) 396–414.
  • D.H. Yang, C.S. Park, J.H. Min, M.H. Oh, Y.S. Yoon, S.W. Lee, J.S. Shin, Fullerene nano hybrid metal oxide ultrathin films, Curr. Appl. Phys. 9 (2009) 132–139.
  • F. Augusto, E. Carasek, R.C.S. Gomes, S.R. Rivellino, A.D. Batista, E.A. Martendal, New sorbents for extraction and micro extraction techniques, J. Chromatogr. A. 1217 (2010) 2533–2542.
  • F.C. Alina, M. Maria, M. Aurelia, Photocatalytic degradation of organic pollutants using NiO based materials, UPB Sci. Bull. Series B. 74 (2012) 109–116.
  • F. Faezeh, H. Sara, Facile synthesis and characterization of nano porous NiO with folic acid as photodegradation catalyst for congo red, Mater. Sci. Appl. 3 (2012) 697–703.
  • A. Pallavi, K. Anil, A. Rameshwar, R.K. Malkani, A comparative study of photocatalytic activity of some colored semiconducting oxides, Iran. J. Chem. Chem. Eng. 29 (2010) 43–48.
  • R. Vinu, P. Sneha, M. Giridhar, Dye sensitized visible light degradation of phenolic compounds, J. Chem. Eng. 165 (2010) 784–797.
  • G. Li Puma, A. Bono, D. Krishnaiah, J.G. Collin, Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapour deposition: A review paper, J. Hazard. Mater. 157 (2008) 209–219.
  • M. Inagaki, T. Imai, T. Yoshikawa, B. Tryba, Photocatalytic activity of anatase powders for oxidation of methylene blue in water and diluted NO gas, Appl. Catal., B. 51 (2004) 247–254.
  • Y. Li, M. Ma, S. Sun, X. Wang, W. Yan, Y. Ouyang, Preparation, photocatalytic activity of TiO2–carbon surface composites by supercritical pretreatment and sol–gel process, Catal. Commun. 9 (2008) 1583–1587.
  • Y. Li, S. Zhang, Q. Yu, W. Yin, The effects of activated carbon supports on the structure and properties of TiO2 nanoparticles prepared by a sol–gel method, Appl. Surf. Sci. 253 (2007) 9254–9258.
  • J. Xu, Y. Ao, D. Fu, C. Yuan, Synthesis of fluorine doped titania coated activated carbon under low temperature with high photocatalytic activity under visible light, J. Phys. Chem. Solids 69 (2008) 2366–2370.
  • E. Carpio, P. Zu-niga, S. Ponce, J. Solis, J. Rodriguez, W. Estrada, Photocatalytic degradation of phenol using TiO2 nanocrystals supported on activated carbon, J. Mol. Catal., A 228 (2005) 293–298.
  • A. Subramani, K. Byrappa, S. Ananda, K. Lokanatha Rai, K. Lokanatha Rai, M. Yoshimura, Photocatalytic degradation of indigo carmine dye using TiO2 impregnated activated carbon, Bull. Mater. Sci. 30 (2007) 37–41.
  • J. Matos, J. Laine, J.M. Herrmann, D. Uzcategui, J.L. Brito, Influence of activated carbon upon titania on aqueous photocatalytic consecutive runs of phenol photodegradation, Appl. Catal., B. 70 (2007) 461–469.
  • T.T. Lim, P.S. Yap, M. Srinivasan, A.G. Fane, TiO2/AC composites for synergistic adsorption–photocatalysis processes: Present challenges and further developments for water treatment and reclamation, Crit. Rev. Environ. Sci. Technol. 41 (2011) 1173–1230.
  • B. Tryba, A.W. Morawski, M. Inagaki, Application of TiO2-mounted activated carbon to the removal of phenol from water, Appl. Catal., B. 41 (2003) 427–433.
  • N. Sobana, B. Krishnakumar, M. Swaminathan, Synergism and effect of operational parameters on solar photocatalytic degradation of direct yellow 4 with AC-ZnO, Mater. Sci. Semicond. Process. 16 (2013) 1046–1051.
  • S.T. Aruna, A.S. Mukasyan, Combustion synthesis and nanomaterials, Curr. Opin. Solid State Mater. Sci. 12 (2008) 44–50.
  • Y. Koseoglu, A simple microwave assisted combustion synthesis and structural, optical and magnetic characterization of ZnO nano platelets, Ceram. Int. 40 (2014) 4673–4679.
  • P. Suresh, J. Judith Vijaya, L. John Kennedy, R.T. Kumar, Two stage-two step activation process for the fabrication of micro-mesoporous carbons from rice husk, J. Bioprocess Eng. Biorefinery 2 (2013) 230–239.
  • K. Sridharan, T.J. Park, Thorn-ball shaped TiO2 nanostructures: Influence of Sn2+ doping on the morphology and enhanced visible light photocatalytic activity, Appl. Catal. B 134–135 (2013) 174–184.
  • B. Sanjaya, J.R. Kalya, S. Srinivasarao, Rapid growth of nanotubes and nanorods of würtzite ZnO through microwave irradiation of a metalorganic complex of zinc and a surfactant in solution, Bull. Mater. Sci. 33 (2010) 89–95.
  • B.D. Cullity, Elements of X-ray Diffraction. Addison-Wesley, Boston, MA, 1978.
  • P. Suresh, J.J. Vijaya, L.J. Kennedy, Fabrication of hexagonal ZnO nanorods on porous carbon matrix by microwave irradiation, J. Nanosci. Nanotechnol. 13 (2013) 3068–3073.
  • A. Manikandan, J.J. Vijaya, L.J. Kennedy, Comparative investigation of NiO nano- and microstructures for structural, optical and magnetic properties, Physica E 49 (2013) 117–123.
  • H. Ma, J. Han, Y. Fu, Y. Song, C. Yu, X. Dong, Synthesis of visible light responsive ZnO–ZnS/C photocatalyst by simple carbothermal reduction, App. Catal, B. 102 (2011) 417–423.
  • J. Cheng, X. Zhang, Y. Ye, Synthesis of nickel nanoparticles and carbon encapsulated nickel nanoparticles supported on carbon nanotubes, J. Solid State Chem. 179 (2006) 91–95.
  • M.M. Titirici, A. Thomas, S.H. Yu, J.O. Muüller, M. Antonietti, A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization, Chem. Mater. 19 (2007) 4205–4212.
  • S.K. Sharma, F.J. Vastola, P.L. Walker Jr., Reduction of nickel oxide by carbon: II. Interaction between nickel oxide and natural graphite, Carbon 35 (1997) 529–533.
  • Y. Hattori, T. Konishi, H. Kanoh, S. Kawasaki, K. Kaneko, Stable nanoporous metallic nickel colloids, Adv. Mater. 15 (2003) 529–531.
  • Z. Zhu, N. Wei, H. Liu, Z. He, Microwave assisted hydrothermal synthesis of Ni(OH)2 architectures and their in situ thermal convention to NiO, Adv. Powder Technol. 22 (2011) 422–436.
  • M.N. Salavati, M. Entesari, Controlled synthesis of spherical α-Ni (OH)2 hierarchical nanostructures via a simple hydrothermal process and their conversion to NiO, Polyhedron 33 (2012) 302–313.
  • Y.D. Hou, X.C. Wang, L. Wu, X.F. Chen, Z.X. Ding, X.X. Wang, X.Z. Fu, N-doped SiO2/TiO2 mesoporous nanoparticles with enhanced photocatalytic activity under visible light irradiation, Chemosphere 72 (2008) 414–421.
  • O. Duggan, S.J. Allen, Study of the physical and chemical characteristics of a range of chemically treated, lignite based carbons, Water Sci. Technol. 35 (1997) 21–27.
  • L.L. Teh, F.W. Wen, Y.S. Youn, T.L. Yi, B.W. Chen, Evaluation of microwave enhanced catalytic degradation of 4-chlorophenol over nickel oxides, J. Mol. Catal, A 273 (2007) 303–309.
  • Y. Xiaoyan, T. Xili, W. Jian, G. Changwei, Z. Mingang, L. Liping, Synthesis of mesoporous NiO nanoflake array and its enhanced electrochemical performance for supercapacitor application, J. Alloys Compd. 593 (2014) 184–189.
  • K.S. Kim, R.E. Davis, Electron spectroscopy of the nickel oxygen system, J. Electron Spectrosc. Relat. Phenom. 1 (1972) 251–258.
  • M.C. Biesinger, B.P. Payne, L.W.M. Lau, A. Gerson, R.S.C. Smart, X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems, Surf. Interface Anal. 41 (2009) 324–332.
  • B. Zhao, X.K. Ke, J.H. Bao, C.L. Wang, L. Dong, Y.W. Chen, H.L. Chen, Synthesis of flower-like NiO and effects of morphology on its catalytic properties, J. Phys. Chem. C. 113 (2009) 14440–14447.
  • Y. Hattori, T. Konishi, K. Kaneko, XAFS and XPS studies on the enhancement of methane adsorption by NiO dispersed ACF with the relevance to structural change of NiO, Chem. Phys. Lett. 355 (2002) 37–42.
  • A.P. Grosvenor, M.C. Biesinger, R.S.C. Smart, N.S. McIntyre, New interpretations of XPS spectra of nickel metal and oxides, Surf. Sci. 600 (2006) 1771–1779.
  • H.A.E.H. Weaver, J.F. Weaver, G.B. Hoflund, G.N. Salaita, Electron energy loss spectroscopic investigation of Ni metal and NiO before and after surface reduction by Ar+ bombardment, J. Electron Spectrosc. Relat. Phenom. 134 (2004) 139–171.
  • A. Machocki, T. Ioannides, B. Stasinska, W. Gac, G. Avgouropoulos, D. Delimaris, W. Grzegorczyk, S. Pasieczna, Manganese lanthanum oxides modified with silver for the catalytic combustion of methane, J. Catal. 227 (2004) 282–296.
  • C.C. Yu, Y.L. Chen, C.L. Hung, Surface chemistry of polyacrylonitrile and rayon based activated carbon fibers after post heat treatment, Mater. Chem. Phys. 101 (2007) 199–210.
  • X. Wang, R. Zheng, Z. Liu, H. Ho, J. Xu, S.P. Ringer, Structural, optical and magnetic properties of Co-doped ZnO nanorods with hidden secondary phases, Nanotechnology 19 (2008) 455702-1–455702-8.
  • G. Bai, H. Dai, J. Deng, Y. Liu, W. Qiu, Z. Zhao, X. Li, H. Yang, The micro emulsion preparation and high catalytic performance of mesoporous NiO nanorods and nanocubes for toluene combustion, Chem. Eng. J. 219 (2013) 200–208.
  • M. Ahmad, E. Ahmed, Z.L. Hong, X.L. Jiao, T. Abbas, N.R. Khalid, Enhancement in visible light-responsive photocatalytic activity by embedding Cu-doped ZnO nanoparticles on multi-walled carbon nanotubes, Appl. Surf. Sci. 285 (2013) 702–712.
  • C.M. Castilla, M.V.L. Ramon, F.C. Marin, Changes in surface chemistry of activated carbons by wet oxidation, Carbon 38 (2000) 1995–2001.
  • T.I.T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin, N.M.D. Brown, High resolution XPS characterization of chemical functionalized MWCNTs and SWCNTs, Carbon 43 (2005) 153–161.
  • D.J. Balazs, K. Triandafillu, Y. Chevolot, B.O. Aronsson, H. Harms, P. Descouts, H.J. Mathieu, Surface modification of PVC endotracheal tubes by oxygen discharge to reduce bacterial adhesion, Surf. Inter. Anal. 35 (2003) 301–309.
  • W.H. Lee, S.J. Kim, W.J. Lee, J.G. Lee, R.C. Haddon, P.J. Reucroft, X-ray photoelectron spectroscopy studies of surface modified single walled carbon nanotube materials, Appl. Surf. Sci. 181 (2001) 121–127.
  • M.T. Martinez, M.A. Callejas, A.M. Benito, M. Cochet, S. Seeger, A. Anson, J. Schreiber, Sensitivity of single wall carbon nanotubes to oxidative processing: Structural modification, intercalation and functionalization, Carbon 41 (2003) 2247–2256.
  • B. Hapke, Theory of Reflectance and Emittance Spectroscopy, University Press, Cambridge, 1993.
  • J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, S. Jiazhong, Review of photoluminescence performance of nano sized semiconductor materials and its relationships with photocatalytic activity, Sol. Energy Mater. Sol. Cells. 90 (2006) 1773–1787.
  • C. Pan, R. Ding, Y. Hu, G. Yang, Electro spinning fabrication of rime like NiO nanowires/nano fibers hierarchical architectures and their photocatalytic properties, Physica E 54 (2013) 138–143.
  • A. Hameed, T. Montini, V. Gombac, P. Fornasiero, Photocatalytic decolourization of dyes on NiO–ZnO nano-composites, Photochem. Photobiol. Sci. 8 (2009) 677–682.
  • X.F. Song, L. Gao, Facile synthesis and hierarchical assembly of hollow nickel oxide architectures bearing enhanced photocatalytic properties, J. Phys. Chem. C 112 (2008) 15299–15305.
  • S. Shang, K. Xue, D. Chen, X. Jiao, Preparation and characterization of rose like NiO nanostructures, CrystEngComm 13 (2011) 5094–5099.
  • J.R. Utrilla, M.S. Polo, Ozonation of 1,3,6-naphthalenetrisulphonic acid catalysed by activated carbon in aqueous phase, Appl. Catal., B 39 (2002) 319–329.
  • I.V. Gala, J.J.L. Penalver, M.S. Polo, J.R. Utrilla, Activated carbon as photocatalyst of reactions in aqueous phase, Appl. Catal., B 142–143 (2013) 694–704.
  • H.P. Boehm, Free radicals and graphite, Carbon 50 (2012) 3154–3157.
  • W.N.A. Guerra, J.M.T. Santos, L.R.R. Araujo, Decolorization and mineralization of reactive dyes by a photocatalytic process using ZnO and UV radiation, Water Sci. Technol. 66 (2012) 158–164.
  • J.C. Luka, M. Klementova, P. Bezdick, S. Bakardijev, J. Subrt, L. Szatmary, Z. Bastl, J. Jirkovsky, Influence of Zr as TiO2 doping ion on photocatalytic degradation of 4-chlorophenol, Appl. Catal., B 74 (2007) 83–91.
  • J. Matos, J. Laine, J.M. Herrmann, Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon, Appl. Catal., B 18 (1998) 281–291.
  • M. Ahmad, E. Ahmed, Z.L. Hong, J.F. Xu, N.R. Khalid, A. Elhissi, W. Ahmed, A facile one-step approach to synthesizing ZnO/graphene composites for enhanced degradation of methylene blue under visible light, Appl. Surf. Sci. 274 (2013) 273–281.
  • N.R. Khalid, Z.L. Hong, E. Ahmed, Y.W. Zhang, H. Chan, M. Ahmad, Synergistic effects of Fe and graphene on photocatalytic activity enhancement of TiO2 under visible light, Appl. Surf. Sci. 258 (2012) 5827–5834.
  • Y. Wang, Solar photocatalytic degradation of eight commercial dyes in TiO2 suspension, Water Res. 34 (2000) 990–994.
  • M. Kosmulski, pH-dependent surface charging and points of zero charge. IV: Update and new approach, J. Colloid. Interface Sci. 337 (2009) 439–448.
  • W.Z. Tang, C.P. Huang, Photocatalyzed oxidation path ways of 2,4-dichlorophenol by CdS in basic and acidic aqueous solutions, Water Res. 29 (1995) 745–756.
  • K. Baransi, Y. Dubowski, I. Sabbah, Synergetic effect between photocatalytic degradation and adsorption processes on the removal of phenolic compounds from olive mill wastewater, Water Res. 46 (2012) 789–798.
  • J.C. D’Oliveria, G. AlSayyed, P. Pichat, Photodegradation of 2 and 3-chlorophenol in TiO2 aqueous suspension, Environ. Sci. Technol. 24 (1990) 990–996.
  • Z. Shu, X. Jiao, D. Chen, Hydrothermal synthesis and selective photocatalytic properties of tetragonal star like ZrO2 nanostructures, CrystEngComm 15 (2013) 4288–4294.
  • S.H. Yoon, J.H. Lee, Oxidation mechanism of As (lll) in the UV/TiO2 system: Evidence for a direct hole oxidation mechanism, Environ. Sci. Technol. 39 (2005) 9695–9701.
  • B. Bayarri, J. Gimenez, D. Curco, S. Esplugas, Photocatalytic degradation of 2,4-dichlorophenol by TiO2/UV: Kinetics, actinometries and models, Catal. Today 101 (2005) 227–236.
  • C.B. Mendive, D.W. Bahnemann, M.A. Blesa, Microscopic characterization of the photocatalytic oxidation of oxalic acid adsorbed onto TiO2 by FTIR-ATR, Catal. Today 101 (2005) 237–244.
  • L. Mansouri, L. Bousselmi, A. Ghrabi, Degradation of recalcitrant organic contaminants by solar photocatalysis, Water. Sci. Technol. 55 (2007) 119–125.
  • E.L. Foletto, S. Battiston, J.M. Simoes, M.M. Bassaco, L.S.F. Pereira, E.M.M. Flores, E.I. Muller, Synthesis of ZnAl2O4 nanoparticles by different routes and the effect of its pore size on the photocatalytic process, Microporous Mesoporous Mater. 163 (2012) 29–33.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.