64
Views
5
CrossRef citations to date
0
Altmetric
Articles

A novel chromium selective electrode based on surfactant-modified Iranian clinoptilolite nanoparticles

&
Pages 3304-3314 | Received 24 May 2014, Accepted 17 Oct 2014, Published online: 06 Dec 2014

References

  • C. Wardak, 1-Hexyl-3-methylimidazolium hexafluorophosphate as new component of polymeric membrane of lead ion-selective electrode, Desalin. Water Treat. 51 (2013) 658–669.
  • V.K. Gupta, R. Prasad, A. Kumar, Preparation of ethambutol/copper(II) complex and fabrication of PVC based membrane potentiometric sensor for copper, Talanta 60 (2003) 149–160.
  • J.-H. Lee, J.-H. Choi, Ion-selective composite carbon electrode coated with TiO2 nanoparticles for the application of electrosorption process, Desalin. Water Treat. 51 (2013) 503–510.
  • V.K. Gupta, A.K. Jain, P. Kumar, PVC-based membranes of N, N’-dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane as Pb(II)-selective sensor, Sens. Actuators, B 120 (2006) 259–265.
  • C. Young-Woo, M. Norihiko, M. Seung-Hyeon, Potentiometric Cr(VI) selective electrode based on novel ionophore-immobilized PVC membranes, Talanta 66 (2005) 1254–1263.
  • E. Bilici, Z. Yazicigil, M. Tok, Y. Oztekin, Electrochemical determination of copper (II) using modified glassy carbon electrodes, Desalin. Water Treat. 50 (2012) 198–204.
  • V.K. Gupta, S. Chandra, R. Mangla, Dicyclohexano-18-crown-6 as active material in PVC matrix membrane for the fabrication of cadmium selective potentiometric sensor, Electrochim. Acta 47 (2002) 1579–1583.
  • A.K. Jain, V.K. Gupta, P.A. Ganeshpure, J.R. Raisoni, Ni(II)-selective ion sensors of salen type Schiff base chelates, Anal. Chim. Acta 553 (2005) 177–184.
  • V.K. Gupta, B. Sethi, R.A. Sharma, Sh. Agarwal, A. Bharti, Mercury selective potentiometric sensor based on low rim functionalized thiacalix [4]-arene as a cationic receptor, J. Mol. Liq. 177 (2013) 114–118.
  • R.N. Goyal, V.K. Gupta, S. Chatterjee, Fullerene-C60-modified edge plane paralytic graphite electrode for the determination of dexamethasone in pharmaceutical formulations and human biological fluids, Bioelectronic 24(6) (2009) 1649–1654.
  • S.M. Prabhu, S. Meenakshi, Effect of metal ions loaded onto iminodiacetic acid functionalized cation exchange resin for selective fluoride removal, Desalin. Water Treat. 52 (2014) 2527–2536.
  • V.K. Gupta, R. Mangla, U. Khurana, P. Kumar, Determination of uranyl ions using poly(vinyl chloride) based 4-tert-butylcalix[6]arene membrane sensor, Electroanalysis 11(8) (1999) 573–576.
  • V.K. Gupta, S. Jain, S. Chandra, Chemical sensor for lanthanum(III) determination using aza-crown as ionophore in poly(vinyl chloride) matrix, Anal. Chim. Acta 486 (2003) 199–207.
  • D. Belhout, D. Ghernaout, S. Djezzar-Douakh, A. Kellil, Electrocoagulation of a raw water of Ghrib Dam (Algeria) in batch using aluminium and iron electrodes, Desalin. Water Treat. 16 (2010) 1–9.
  • V.K. Gupta, H. Khani, B. Ahmadi-Roudi, Sh. Mirakhorli, E. Fereyduni, Sh. Agarwal, Prediction of capillary gas chromatographic retention times of fatty acid methyl esters in human blood using MLR, PLS and back-propagation artificial neural networks, Talanta 83 (2011) 1014–1022.
  • V.K. Gupta, A.K. Singh, M. Al Khayat, B. Gupta, Neutral carriers based polymeric membrane electrodes for selective determination of mercury (II), Anal. Chim. Acta 590 (2007) 81–90.
  • K. Morakchi, A. Hamel, R. Kherrat, Electrochemical sensors for the detection of cadmium (II) based on calix [4] arene, Desalin. Water Treat. 46 (2012) 168–170.
  • A.K. Jain, V.K. Gupta, L.P. Singh, J.R. Raisoni, A comparative study of Pb2+ selective sensors based on derivatized tetrapyrazole and calix[4]arene receptors, Electrochim. Acta 51 (2006) 2547–2553.
  • V.K. Gupta, L.P. Singh, R. Singh, N. Upadhyay, S.P. Kaur, B. Sethi, A novel copper (II) selective sensor based on dimethyl 4, 4′(o-phenylene) bis(3-thioallophanate) in PVC matrix, J. Mol. Liq. 174 (2012) 11–16.
  • H.R. Tashauoei, H. Movahedian Attar, M. Kamali, M.M. Amin, M. Nikaeen, Removal of hexavalent chromium CR(VI) from aqueous solutions using surface modified nanozeolite A, Int. J. Environ. Res. 4(3) (2010) 491–500.
  • A. Nezamzadeh-Ejhieh, M. Shahanshahi, Modification of clinoptilolite nano-particles with hexadecylpyridynium bromide surfactant as an active component of Cr(VI) selective electrode, J. Ind. Eng. Chem. 19 (2013) 2026–2033.
  • A. Nezamzadreh-Ejhieh, Gh. Raja, Modification of nano-clinoptilolite zeolite with Hexadecyltrimethylammunium surfactant as an active ingredient of chromate selective membrane electrode, J. Chem. 2013 (2013) Article ID 685290, 13 pp.
  • A. Nezamzadeh, E. Mirzaeyan, Oxalate membrane-selective electrode based on surfactant-modified zeolite, Electrochim. Acta 56 (2011) 7749–7757.
  • H. Deveci, Y. Kar, Adsorption of hexavalent chromium from aqueous solutions by bio-chars obtained during biomass pyrolysis, J. Ind. Eng. Chem. 19 (2013) 190–196.
  • K.J. Cronje, K. Chetty, M.J. Carsky, N. Sahu, B.C. Meikap, Optimization of chromium(VI) sorption potential using developed activated carbon from sugarcane bagasse with chemical activation by zinc chloride, Desalination 275(1–3) (2011) 276–284.
  • V.K. Gupta, A.K. Jain, P. Kumar1, S. Agarwal, G. Maheshwari, Chromium(III)-selective sensor based on tri-o-thymotide in PVC matrix, Sens. Actuators, B 113 (2006) 182–186.
  • R.A. Kumbasar, Selective extraction and concentration of chromium(VI) from acidic solutions containing various metal ions through emulsion liquid membranes using Amberlite LA-2, J. Ind. Eng. Chem. 16 (2010) 829–836.
  • J. Xiaobing, C. Yanru, Z. Xiyu, W. Desheng, W. Xiaozhe, X. Heng, Biosorption of Cr(VI) from simulated wastewater using a cationic surfactant modified spent mushroom, Desalination 269 (2011) 120–127.
  • A. Idris, E. Misran, N.M. Yusof, Photocatalytic reduction of Cr(VI) by PVA-alginate encapsulated γFe2O3 magnetic beads using different types of illumination lamp and light, J. Ind. Eng. Chem. 18 (2012) 2151–2156.
  • A. Walcarius, Electroanalytical applications of microporous zeolites and mesoporous (organo)silicas: Recent trends, Electroanalysis 7 (2008) 711–803.
  • A. Nezamzadeh-Ejhieh, A. Badri, Application of surfactant modified zeolite membrane electrode towards potentiometric determination of perchlorate, J. Electroanal. Chem. 660 (2011) 71–79.
  • A. Nezamzadeh-Ejhieh, N. Masoudipour, Application of a new potentiometric method for determination of phosphate based on a surfactant-modified zeolite carbon-paste electrode (SMZ-CPE), Anal. Chim. Acta 658 (2010) 68–74.
  • A. Nezamzadeh-Ejhieh, Z. Nematollahi, Surfactant modified zeolite carbon paste electrode (SMZ-CPE) as a nitrate selective electrode, Electrochim. Acta 56 (2011) 8334–8341.
  • A. Nezamzadeh-Ejhieh, E. Afshari, Modification of a PVC-membrane electrode by surfactant modified clinoptilolite zeolite towards potentiometric determination of sulfide, Microporous Mesoporous Mater. 153 (2012) 267–274.
  • A. Nezamzadeh-Ejhieh, A. Esmaeilian, Application of surfactant modified zeolite carbon paste electrode (SMZ-CPE) towards potentiometric determination of sulfate, Microporous Mesoporous Mater. 147 (2012) 302–309.
  • AChester, E.G. Derouane, Zeolite Characterization and Catalysis, fifth ed., Springer, London, 2009, p. 197.
  • G. Gottardi, E. Galli, Natural Zeolites, Springer-Verlag, New York, NY, 1985.
  • U. Wingenfelder, G. Furrer, R. Schulin, Sorption of antimonite by HDTMA-modified zeolite, Microporous Mesoporous Mater. 95 (2006) 265–271.
  • R.L. Anderson, Practical Statistics for Analytical Chemists, first ed., Van Nostrand Reinhold, New York, NY, 1987, p. 296.
  • V.K. Gupta, R.N. Goyal, R.A. Sharma, Anion recognition using newly synthesized hydrogen bonding disubstituted phenylhydrazone-based receptors: Poly(vinyl chloride)-based sensor for acetate, Talanta 76 (2008) 859–864.
  • E. Sevcan, D. Ayca, M. Sahahabuddin, Using of hydrogen ion-selective poly (vinyl chloride) membrane electrode based on calix [4] arene as thiocyanate ion-selective electrode, Sens. Actuators, B 113 (2006) 290–296.
  • X. Jing, Y. Cao, X. Zhang, D. Wang, X. Wu, Biosorption of Cr(VI) from simulated wastewater using a cationic surfactant modified spent mushroom, Desalination 269 (2011) 120–127.
  • R. Leyva-Ramos, A. Jacobo-Azuara, P.E. Diaz-Flores, R.M. Guerrero-Coronado, J. Mendoza-Barron, M.S. Berber-Mendoza, Adsorption of chromium(VI) from an Aqueous solution on a surfactant-modified zeolite, J. Hazard Mater. 134 (2008) 1–5.
  • V.K. Gupta, A.K. Jain, G. Maheshwari, H. Lang, Z. Ishtaiwi, Copper(II)-selective potentiometric sensors based on porphyrins in PVC matrix, Sens. Actuators, B 117 (2006) 99–106.
  • Y.W. Choi, S.H. Moon, Determination of Cr(VI) using an ion selective electrode with SLMs containing Aliquat 336, Environ. Monit. Assess. 92(1–3) (2004) 163–178.
  • H. Elif Kormah, M. Yılmaz, E. Kılıc, Construction of an anion-selective electrode: Dichromate-selective electrode, Sens. Actuators, B 127 (2007) 497–504.
  • M.R. Ganjali, Z. Rafiei-Sarmazdeh, T. Poursaberi, S.J. Shahtaheri, P. Norouzi, Dichromate ion-selective sensor based on functionalized SBA-15/ionic liquid/MWCNTs/Graphite, J. Electrochem. Sci. 7 (2012) 1908–1916.
  • M. Mazloum Ardakani, A. Sadeghiand, M. Salavati-Niasari, Potentiometric chromate quantification based on interaction with N,N′ butylen bis(salicilideniminato) Copper(ii), Sci. Iranica 15 (2008) 444–451.
  • A. Yari, H. Bagheri, Determination of Cr(VI) with selective sensing of Cr(vi) anions by a PVC-membrane electrode based on quinaldine red, J. Chin. Chem. Soc. 56 (2009) 289.
  • F. Hofmeister, Zurlehre von der wirkung der salze (About the science of the effect of salts), Zweitemittheilung, Arch. Exp. Pathol. Pharmacol. 24 (1888) 247–260.
  • V.K. Gupta, A.K. Singh, S. Mehtab, B. Gupta, A cobalt(II)-selective PVC membrane based on a Schiff base complex of N, N-bis(salicylidene)-3,4-diaminotoluene, Anal. Chim. Acta 566 (2006) 5–10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.