40
Views
9
CrossRef citations to date
0
Altmetric
Articles

Effect of pH on the performance of olive pips reactive barrier through the migration of copper-contaminated groundwater

Pages 4935-4943 | Received 30 Aug 2014, Accepted 08 Dec 2014, Published online: 02 Jan 2015

References

  • A. Singh, R.C. Kuhad, O.P. Ward, Advanced in Applied Bioremediation, vol. 17, Springer-Verlag Berlin Heidelberg, Berlin, 2009, ISBN: 978-3-540-89620-3.10.1007/978-3-540-89621-0
  • M.S. Khan, A. Zaidi, R. Goel, J. Musarvat, Biomanagement of Metal-contaminated Soils, vol. 20, Springer, Berlin, 2011, ISBN: 978-94-007-1914-9.10.1007/978-94-007-1914-9
  • S.H. Monfared, Community garden heavy metals study, Supported by Environmental Canada, Ecology Action Center, HALIFAX, Nova Scotia Environmental Network, and Nova Scotia Agricultural College, Halifax, NS, 2011.
  • R.W. Puls, R.M. Powell, D.W. Blowes, J.L. Vogan, R.W. Gillham, P.D. Powell, D. Schultz, T.M. Sivavec, R. Landis, Permeable reactive barriers technologies for contaminant remediation, United States Environmental Protection Agency, Report #Number EPA/600/R-98/125, Washington, DC, 1998.
  • G. Bartzas, K. Komnitsas, Solid phase studies and geochemical modelling of low-cost permeable reactive barriers, J. Hazard. Mater. 183 (2010) 301–308.10.1016/j.jhazmat.2010.07.024
  • C.R. Evanko, D.A. Dzombak, Remediation of metals contaminated soils and groundwater, Technology Evaluation Report TE-97-01, Ground-water Remediation Technologies Analysis Center, Pittsburgh, PA, 1997.
  • U.K. Garg, M.P. Kaur, V.K. Garg, D. Sud, Removal of hexavalent chromium from aqueous solution by agricultural waste biomass, J. Hazard. Mater. 140 (2007) 60–68.10.1016/j.jhazmat.2006.06.056
  • M.M. Ghosh, J.R. Yuan, Adsorption of inorganic arsenic and organoarsenicals on hydrous oxides, Environ. Prog. 6(3) (1987) 150–157.10.1002/(ISSN)1547-5921
  • D. Wankasi, T. Tarawou, Studies on the effect of pH on the sorption of Pb(II) and Cu(II) ions from aqueous media by Nipa palm (Nypa fruticans Wurmb), J. Appl. Sci. Environ. Manage. 12(4) (2008) 87–94.
  • T.H. Hsia, S.L. Lo, C.F. Lin, As(V) adsorption on amorphous iron oxide: Triple layer modelling, Chemosphere 25(12) (1992) 1825–1837.10.1016/0045-6535(92)90022-J
  • Q. Yu, P. Kaewsarn, A model for pH dependent equilibrium of heavy metal biosorption, Korean J. Chem. Eng. 16(6) (1999) 753–757.10.1007/BF02698347
  • F. Vegliò, Modelling of equilibrium heavy metal biosorption data at different pH: A possible methodological approach, Eur. J. Mineral Process. Environ. Prot. 3(1) 1303–0868 (2003) 49–57.
  • M. Gheju, A. Iovi, I. Balcu, Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: Effect of feed solution pH, J. Hazard. Mater. 153 (2008) 655–662.10.1016/j.jhazmat.2007.09.009
  • G.P. Jeppu, T.P. Clement, A modified Langmuir–Freundlich isotherm model for simulating pH-dependent adsorption effects, J. Contam. Hydrol. 129–130 (2012) 46–53.10.1016/j.jconhyd.2011.12.001
  • L.N. Reddi, H.I. Inyang, Geo-environmental Engineering Principles and Applications, Marcel Dekker, Inc., New York, NY, 2000, ISBN: 0-8247-0045-7.10.1201/9780203913734
  • H.K. Hansen, F. Arancibia, C. Gutiérrez, Adsorption of copper onto agriculture waste materials, J. Hazard. Mater. 180 (2010) 442–448.10.1016/j.jhazmat.2010.04.050
  • R.J. Watts, Hazardous Wastes: Sources, Pathways, Receptors, John Wiley and Sons, New York, NY, 1998.
  • F. Veglio', A. Esposito, A.P. Reverberi, Copper adsorption on calcium alginate beads: Equilibrium pH-related models, Hydrometallurgy 65 (2002) 43–57.10.1016/S0304-386X(02)00064-6
  • B. Kaya, A. Gharehbaghi, Implicit solutions of advection diffusion equation by various numerical methods, Aust. J. Basic Appl. Sci. 8(1) (2014) 381–391.
  • S. Wang, Z. Nan, Y. Li, Z. Zhao, The chemical bonding of copper ions on kaolin from Suzhou, China, Desalination 249 (2009) 991–995.10.1016/j.desal.2009.09.017
  • J.F. Relyea, Theoretical and experimental considerations for the use of the column method for determining retardation factors, Radioact. Waste Manage. Nucl. Fuel Cycle 3(2) (1982) 151–166.
  • A.A. Faisal, Z.A. Hmood, Groundwater protection from cadmium contamination by zeolite permeable reactive barrier, Desalin. Water Treat. doi: 10.1080/19443994.2013.855668.
  • J. Delleur, The Handbook of Groundwater Engineering, CRC Press LLC, Springer-Verlag, Boca Raton, FL, 1999, ISBN: 3-540-64745-7.
  • C.W. Fetter, Contaminant Hydrogeology, second ed., Prentice-Hall, New Jersey, NJ, 1999, ISBN: 0-13-751215-5.
  • J.P. Chen, L. Wang, S.W. Zou, Determination of lead bio-sorption properties by experimental and modeling simulation study, Chem. Eng. J. 131 (2008) 209–215.
  • N. Babakhouya, H. Aksas, S. Boughrara, K. Louhab, Adsorption of Cd(II) ions from aqueous solution using mixed sorbents prepared from olive stone and date pit, J. Appl. Sci. 10(19) (2010) 2316–2321.
  • K.M. Doke, M. Yusufi, R.D. Joseph, E.M. Khan, Biosorption of hexavalent chromium onto wood apple shell: Equilibrium, kinetic and thermodynamic studies, Desalin. Water Treat. 50 (2012) 170–179.10.1080/19443994.2012.708565
  • M. Alkan, B. Kalay, M. Doğan, Ö. Demirbaş, Removal of copper ions from aqueous solutions by kaolinite and batch design, J. Hazard. Mater. 153 (2008) 867–876.10.1016/j.jhazmat.2007.09.047
  • S.U. Kurnaz, H. Buyukgungor, Assessment of various biomasses in the removal of phenol from aqueous solutions, J. Microb. Biochem. Technol. 1 (2009) 47–50.
  • M.A. Hossain, H. Hao Ngo, W.S. Guo, T.V. Nguyen, Removal of copper from water by adsorption onto banana peel as bioadsorbent, Int. J. GEOMATE 2(2) (2012) 227–234.
  • G. Blázquez, F. Hernáinz, M. Calero, L.F. Ruiz-Núñez, Removal of cadmium ions with olive stones: The effect of somes parameters, Process Biochem. 40 (2005) 2649–2654.10.1016/j.procbio.2004.11.007
  • P. Krause, D.P. Boyle, F. Bäse, Comparison of different efficiency criteria for hydrological model assessment, Adv. Geosci. 5 (2005) 89–97.10.5194/adgeo-5-89-2005
  • H. Xiang-Wei, S. Ming-An, R. Horton, Estimating van Genuchten model parameters of undisturbed soils using an integral method, Soil Science Society of China, Pedosphere 20(1) (2010) 55–62.
  • M.A. Hashim, S. Mukhopadhyay, J.N. Sahu, B. Sengupta, Remediation technologies for heavy metal contaminated groundwater, J. Environ. Manage. 92 (2011) 2355–2388.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.