168
Views
5
CrossRef citations to date
0
Altmetric
Articles

Optimization of microwave irradiated - coconut shell activated carbon using response surface methodology for adsorption of benzene and toluene

, , , , &
Pages 7881-7897 | Received 25 Dec 2014, Accepted 07 Mar 2015, Published online: 14 Apr 2015

References

  • M.P. Abdullahi, S.S. Chian, Chlorinated and nonchlorinated-volatile organic compounds (VOCs) in drinking water of peninsular Malaysia, Sains Malys. 40 (2011) 1255–1261.
  • L. Li, S. Liu, J. Liu, Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal, J. Hazard. Mater. 192 (2011) 683–690.10.1016/j.jhazmat.2011.05.069
  • E.M. Abdullahi, M.A.A. Hassan, Z.Z. Noor, R.K.R. Ibrahim, Volatile organic compounds abatement from industrial wastewaters: Selecting the appropriate technology, Aust. J. Basic Appl. Sci. 12 (2013) 101–113.
  • R.R. Bansode, J.N. Losso, W.E. Marshall, R.M. Rao, R.J. Portier, Adsorption of volatile organic compounds by pecan shell and almond shell-based granular activated carbons, Bioresour. Technol. 90 (2003) 175–184.10.1016/S0960-8524(03)00117-2
  • M.A. Lillo-Ródenas, A.J. Fletcher, K.M. Thomas, D. Cazorla-Amorós, A. Linares-Solano, Competitive adsorption of a benzene–toluene mixture on activated carbons at low concentration, Carbon 44 (2006) 1455–1463.10.1016/j.carbon.2005.12.001
  • J. Mohammed, N.S. Nasri, M.A.A. Zaini, U.D. Hamza, M.M. Ahmed, Optimization of preparation of microwave irradiated bio-based materials as porous carbons for VOCs removal using response surface methodology, Appl. Mech. Mater. 554 (2014) 175–179.
  • M. Peng, L.M. Vane, S.X. Liu, Recent advances in VOCs removal from water by pervaporation, J. Hazard. Mater. 98 (2003) 69–90.10.1016/S0304-3894(02)00360-6
  • F. Su, C. Lu, S. Hu, Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl-oxidized carbon nanotubes, Colloids Surf., A 353 (2010) 83–91.10.1016/j.colsurfa.2009.10.025
  • N. Wibowo, L. Setyadhi, D. Wibowo, J. Setiawan, S. Ismadji, Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: Influence of surface chemistry on adsorption, J. Hazard. Mater. 146 (2007) 237–242.10.1016/j.jhazmat.2006.12.011
  • M.A.A. Zaini, R. Okayama, M. Machida, Adsorption of aqueous metal ions on cattle-manure-compost based activated carbons, J. Hazard. Mater. 170 (2009) 1119–1124.10.1016/j.jhazmat.2009.05.090
  • M.E. Abdullahi, M.A.A. Abu Hassan, Z.Z. Zainon Noor, R.K.R. Raja Ibrahim, Temperature and air–water ratio influence on the air stripping of benzene, toluene and xylene, Desalin. Water Treat. (2014) 1–8, doi: 10.1080/19443994.2014.903209.
  • M. Auta, B.H. Hameed, Coalesced chitosan activated carbon composite for batch and fixed-bed adsorption of cationic and anionic dyes, Colloids Surf., B 105 (2013) 199–206.10.1016/j.colsurfb.2012.12.021
  • J. Mohammed, N.S. Nasri, M.A.A. Zaini, U.D. Hamza, M.M. Ahmed, Comparison on the characteristics of bio-based porous carbons by physical and novel chemical activation, Appl. Mech. Mater. 554 (2014) 175–179.
  • N.S. Nasri, U.D. Hamza, S.N. Ismail, M.M. Ahmed, Assessment of porous carbons derived from sustainable palm solid waste for carbon dioxide capture, J. Cleaner Prod. 71 (2014) 148–157.10.1016/j.jclepro.2013.11.053
  • K. Yang, J. Peng, C. Srinivasakannan, L. Zhang, H. Xia, X. Duan, Preparation of high surface area activated carbon from coconut shells using microwave heating, Bioresour. Technol. 101 (2010) 6163–6169.10.1016/j.biortech.2010.03.001
  • W.A.W.A.K. Ghani, M.S.F. Abdullah, K.A. Matori, A.B. Alias, G. Da Silva, Physical and thermochemical characterization of Malaysian biomass Ashes, J.—The Inst. Eng. Malys. 71 (2010) 9–18.
  • Y.-B. Kim, J.-H. Ahn, Microwave-assisted decolorization and decomposition of methylene blue with persulfate, Int. Biodeterior. Biodegrad. 95 (2014) 208–211.
  • D. Xin-hui, C. Srinivasakannan, P. Jin-hui, Z. Li-bo, Z. Zheng-yong, Comparison of activated carbon prepared from Jatropha hull by conventional heating and microwave heating, Biomass Bioenergy 35 (2011) 3920–3926.10.1016/j.biombioe.2011.06.010
  • R. Hoseinzadeh Hesas, W.M.A. Wan Daud, J.N. Sahu, A. Arami-Niya, The effects of a microwave heating method on the production of activated carbon from agricultural waste: A review, J. Anal. Appl. Pyrolysis 100 (2013) 1–11.10.1016/j.jaap.2012.12.019
  • Q. Liu, T. Zheng, P. Wang, L. Guo, Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation, Ind. Crops Prod. 31 (2010) 233–238.10.1016/j.indcrop.2009.10.011
  • A.A. Ahmad, B.H. Hameed, Effect of preparation conditions of activated carbon from bamboo waste for real textile wastewater, J. Hazard. Mater. 173 (2010) 487–493.10.1016/j.jhazmat.2009.08.111
  • M. Arulkumar, K. Thirumalai, P. Sathishkumar, T. Palvannan, Rapid removal of chromium from aqueous solution using novel prawn shell activated carbon, Chem. Eng. J. 185–186 (2012) 178–186.10.1016/j.cej.2012.01.071
  • S. Chatterjee, A. Kumar, S. Basu, S. Dutta, Application of response surface methodology for methylene blue dye removal from aqueous solution using low cost adsorbent, Chem. Eng. J. 181–182 (2012) 289–299.10.1016/j.cej.2011.11.081
  • M. Auta, J. Mohammed, B.L.T. Philip, A.A. Aboje, Preparation of activated carbon from oil palm fruit bunch for the adsorption of acid red 1 using optimized response surface methodology, J. Eng. Res. Apps. 2 (2012) 1805–1815.
  • D.C. Montgomery, Design and Analysis of Experiments, fifth ed., Wiley, New York, NY, 2001.
  • I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Preparation of activated carbon from coconut husk: Optimization study on removal of 2,4,6-trichlorophenol using response surface methodology, J. Hazard. Mater. 153 (2008) 709–717.10.1016/j.jhazmat.2007.09.014
  • I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Optimization of preparation conditions for activated carbons from coconut husk using response surface methodology, Chem. Eng. J. 137 (2008) 462–470.10.1016/j.cej.2007.04.031
  • Y. Sun, P.A. Webley, Preparation of activated carbons from corncob with large specific surface area by a variety of chemical activators and their application in gas storage, Chem. Eng. J. 162 (2010) 883–892.10.1016/j.cej.2010.06.031
  • N.S. Nasri, J. Mohammed, M.A.A. Zaini, R. Mohsin, U.D. Hamza, M.M. Ahmed, Synthesis and characterization of green porous carbons with large surface area by two step chemical activation with KOH, J. Tek. 67 (2014) 25–28.
  • N.S. Nasri, J. Mohammed, M.A.A. Zaini, R. Mohsin, U.D. Hamza, M.M. Ahmed, Synthesis and characterization of bio-based porous carbons by two step physical activation with CO2, J. Tek. 68 (2014) 5–9.
  • M. Auta, B.H. Hameed, Optimized waste tea activated carbon for adsorption of Methylene Blue and Acid Blue 29 dyes using response surface methodology, Chem. Eng. J. 175 (2011) 233–243.10.1016/j.cej.2011.09.100
  • JISC, Methods for Determination of pH of Aqueous Solutions (Japanese Industrial Standard, JIS Z 8802), Japanese Standards Association, Tokyo, 1984.
  • J.K. Edzwald, Water Quality and Treatment: A Handbook of Drinking Water, American Water Works Association, Mc-Graw Hill, New York, NY, 2011, p. 14.13.
  • E. Yagmur, M. Ozmak, Z. Aktas, A novel method for production of activated carbon from waste tea by chemical activation with microwave energy, Fuel 87 (2008) 3278–3285.10.1016/j.fuel.2008.05.005
  • W.M.A.W. Daud, W.S.W. Ali, Comparison on pore development of activated carbon produced from palm shell and coconut shell, Bioresour. Technol. 93 (2004) 63–69.10.1016/j.biortech.2003.09.015
  • K.Y. Foo, B.H. Hameed, Coconut husk derived activated carbon via microwave induced activation: Effects of activation agents, preparation parameters and adsorption performance, Chem. Eng. J. 184 (2012) 57–65.10.1016/j.cej.2011.12.084
  • P. Chingombe, B. Saha, R.J. Wakeman, Surface modification and characterisation of a coal-based activated carbon, Carbon 43 (2005) 3132–3143.10.1016/j.carbon.2005.06.021
  • H. Demiral, I. Demiral, B. Karabacakoğlu, F. Tümsek, Production of activated carbon from olive bagasse by physical activation, Chem. Eng. Res. Des. 89 (2011) 206–213.10.1016/j.cherd.2010.05.005
  • J.M.V. Nabais, C.E.C. Laginhas, P.J.M. Carrott, M.M.L. Ribeiro Carrott, Production of activated carbons from almond shell, Fuel Process. Technol. 92 (2011) 234–240.10.1016/j.fuproc.2010.03.024
  • I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Adsorption of basic dye using activated carbon prepared from oil palm shell: Batch and fixed bed studies, Desalination 225 (2008) 13–28.10.1016/j.desal.2007.07.005
  • K.Y. Foo, B.H. Hameed, Textural porosity, surface chemistry and adsorptive properties of durian shell derived activated carbon prepared by microwave assisted NaOH activation, Chem. Eng. J. 187 (2012) 53–62.10.1016/j.cej.2012.01.079

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.