58
Views
12
CrossRef citations to date
0
Altmetric
Articles

Pathway identification, enzyme activity and kinetic study for the biodegradation of phenol by Nocardia hydrocarbonoxydans NCIM 2386

&
Pages 8789-8801 | Received 18 Apr 2014, Accepted 02 Mar 2015, Published online: 15 Apr 2015

References

  • W. Cai, J. Li, Z. Zhang, The characteristics and mechanisms of phenol biodegradation by Fusarium sp., J. Hazard. Mater. 148 (2007) 38–42.10.1016/j.jhazmat.2007.02.002
  • K.V. Shetty, Studies of biodegradation in a pulsed plate column reactor, PhD thesis, National Institute of Technology, Karnataka, India, 2008.
  • K.M. Basha, A. Rajendran, V. Thangavelu, Recent advances in the biodegradation of phenol: A review, Asian J. Exp. Biol. Sci. 1(2) (2010) 219–234.
  • A. Al-Mahin, A.Z. Chowdhury, M.K. Alam, Z. Aktar, A.N.M. Fakhruddin, Phenol biodegradation by two strains of Pseudomonas putida and effect of lead and zinc on the degradation process, Int. J. Environ. 1(1) (2011) 28–34.
  • S.E. Agarry, B.O. Solomon, Kinetics of batch microbial degradation of phenols by indigenous Pseudomonas fluorescence, Int. J. Environ. Sci. Technol. 5(2) (2008) 223–232.10.1007/BF03326016
  • B. Basak, B. Bhunia, S. Dutta, A. Dey, Enhanced biodegradation of 4-chlorophenol by Candida tropicalis PHB5 via optimization of physicochemical parameters using Taguchi orthogonal array approach, Int. Biodeterior. Biodegrad. 78 (2013) 17–23.10.1016/j.ibiod.2012.12.005
  • K.V. Shetty, I. Kalifathulla, G. Srinikethan, Performance of pulsed plate bioreactor for biodegradation of phenol, J. Hazard. Mater. 140(1–2) (2007) 346–352.10.1016/j.jhazmat.2006.09.058
  • K.V. Shetty, D.K. Verma, G. Srinikethan, Modelling and simulation of steady-state phenol degradation in a pulsed plate bioreactor with immobilised cells of Nocardia hydrocarbonoxydans, Bioprocess Biosyst. Eng. 34 (2011) 45–56.10.1007/s00449-010-0445-3
  • A. Kumar, S. Kumar, S. Kumar, Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194, Biochem. Eng. J. 22 (2004) 151–159.
  • I. Stoilova, A. Krastanov, V. Stanchev, D. Daniel, M. Gerginova, Z. Alexieva, Biodegradation of high amounts of phenol, catechol, 2,4-dichlorophenol and 2,6-dimethoxyphenol by Aspergillus awamori cells, Enzyme Microb. Technol. 39 (2006) 1036–1041.10.1016/j.enzmictec.2006.02.006
  • S.S. Adav, M.Y. Chen, D.J. Lee, N.Q. Ren, Degradation of phenol by aerobic granules and isolated yeast Candida tropicalis, Biotechnol. Bioeng. 96 (2007) 844–852.10.1002/(ISSN)1097-0290
  • Z. Duan, Microbial degradation of phenol by activated sludge in a batch reactor, Environ. Prot. Eng. 37(2) (2011) 53–63.
  • APHA, Standard methods for examination of water and waste water, twentieth ed., American Public Health Association, Washington, DC, 1999.
  • H.J. Mohammed, H.J. Mohammed, H.S. Hassen, Micro determination study and organo physical properties of 2- aminophenol and catechol with 4-aminoantipyrine in the presence of potassium iodate, Islam. Univ. J. (Ser. Nat. Stud. Eng.) 17(1) (2009) 25–35.
  • C.F. Feist, D.G. Hegeman, Phenol and benzoate metabolism by Pseudomonas putida: Regulation of tangential pathways, J. Bacteriol. 100(2) (1969) 869–877.
  • M. Mahiudddin, A.M.N. Fakhruddin and A. Al-Mahin, Degradation of phenol via meta cleavage pathway by Pseudomonas fluorescens PU1, Int. Scholarly Res. Not. ISRN Microbiol. 2012, .
  • B. Basak, B. Bhunia, S. Dutta, S. Chakraborty, A. Dey, Kinetics of phenol biodegradation at high concentration by a metabolically versatile isolated yeast Candida tropicalis PHB5, Environ. Sci. Pollut. Res. 21 (2014) 1444–1454.10.1007/s11356-013-2040-z
  • M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72 (1976) 248–254.10.1016/0003-2697(76)90527-3
  • S. Zaki, Detection of meta- and ortho-cleavage dioxygenases in bacterial phenol-degraders, J. Appl. Sci. Environ. Manage. 10(3) (2006) 75–81.
  • P.M. Tuah, N.A.R. Rashid, M.M. Salleh, Degradation pathway of phenol through ortho-cleavage by Candida tropicalis RETL-Cr1, Born Sci. 24 (2009) 1–8.
  • N.H. Nadaf, J.S. Ghosh, Purification and characterization of catechol 1,2-dioxygenase from Rhodococcus sp. NCIM 2891, Res. J. Environ. Earth Sci. 3(5) (2011) 608–613.
  • A. Yamada, H. Kishi, K. Sugiyama, T. Hatta, K. Nakamura, E. Masai, M. Fukuda, Two nearly identical aromatic compound hydrolase genes in a strong polychlorinated biphenyl degrader, Rhodococcus sp. Strain RHA1, Appl. Environ. Microbiol. 64(6) (1998) 2006–2012.
  • H. Arai, T. Ohishi, M.Y. Chang, T. Kudo, Arrangement and regulation of the genes for meta-pathway enzymes required for degradation of phenol in Comamonas testosteroni TA441, Microbiology 146 (2000) 1707–1715.
  • K. Faber, Biotransformations in Organic Chemistry, sixth ed., Springer-Verlag, Berlin, Heidelberg, 2011.10.1007/978-3-642-17393-6
  • J.V. Bevilaqua, M.C. Cammarota, D.M.G. Freire, G.L. Sant’Anna Jr., Phenol removal through combined biological and enzymatic treatments, Braz. J. Chem. Eng. 19(2) (2002) 151–158.10.1590/S0104-66322002000200010
  • H. Groger, Y. Asano, Introduction—Principles and historical landmarks of enzyme catalysis in organic synthesis, in: K. Drauz, H. Groger, O. May, Enzyme catalysis in organic synthesis, third ed., WileyVCH Verlag GmbH & Co. KGaA,  Weinheim, 2012, pp. 3–42.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.