74
Views
14
CrossRef citations to date
0
Altmetric
Articles

Nanostructured activated carbon xerogels for removal of methomyl pesticide

, &
Pages 9957-9970 | Received 16 Oct 2014, Accepted 17 Mar 2015, Published online: 07 Apr 2015

References

  • F.P. Carvalho, Agriculture, pesticides, food security and food safety, Environ. Sci. Policy 9 (2006) 685–692.10.1016/j.envsci.2006.08.002
  • Environmental Agency, The Annual Report of the Environmental Agency Pesticide, Monitoring Program, Environmental Agency, UK, 2002.
  • R.A. Rebich, R.H. Coupe, E.M. Thurman, Herbicide concentrations in the Mississippi River Basin-the importance of chloroacetanilide herbicide degradates, Sci. Total Environ. 321 (2004) 189–199.10.1016/j.scitotenv.2003.09.006
  • C. Chang, S. Lee, Adsorption behavior of pesticide methomyl on activated carbon in a high gravity rotating packed bed reactor, Water Res. 46 (2012) 2869–2880.10.1016/j.watres.2012.02.041
  • W.J. Hayes Jr., E.R. Laws Jr. (Eds.), Handbook of Pesticide Toxicology. Classes of Pesticides, vol. 3, Academic Press, Inc., New York, NY, 1991, p. 1165.
  • US Environmental Protection Agency (EPA), Reregistration Eligibility Decision (RED), Facts-Methomyl, EPA-738-F-98-019, Preventation, Pesticides and Toxic substances (1998).
  • Extoxnet Pesticide Information Profiles (PIPs). Available from: <http://extoxnet.orst.edu/pips/ghindex.html>, As posted on July 26, 2007, is a cooperative effort of University of California-Davis, Oregon State University, Michigan State University, Cornell University, and the University of Idaho.
  • M. Farré, J. Fernandez, M. Paez, L. Granada, L. Barba, H.M. Gutierrez, C. Pulgarin, D. Barceló, Analysis and toxicity of methomyl and ametryn after biodegradation, Anal. Bioanal. Chem. 373 (2002) 704–709.10.1007/s00216-002-1413-9
  • H. Börner, Pesticides in Ground and Surface Water in Chemistry of Plant Protection, Spring-Verlag GmbH, Berlin, Germany, 1994.
  • K. Ignatowicz, Selection of sorbent for removing pesticides during water treatment, J. Hazard. Mater. 169 (2009) 953–957.10.1016/j.jhazmat.2009.04.061
  • A. Jusoh, W.J. Hartini, N. Ali, A. Endut, Study on the removal of pesticide in agricultural run off by granular activated carbon, Bioresour. Technol. 102 (2011) 5312–5318.10.1016/j.biortech.2010.12.074
  • R. Li, C. Yang, H. Chen, G. Zeng, G. Yu, J. Guo, Removal of triazophos pesticide from wastewater with Fenton reagent, J. Hazard. Mater. 167 (2009) 1028–1032.10.1016/j.jhazmat.2009.01.090
  • B.H. Hameed, J.M. Salman, A.L. Ahmad, Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones, J. Hazard. Mater. 163 (2009) 121–126.10.1016/j.jhazmat.2008.06.069
  • C.-F. Chang, C.-Y. Chang, K.-E. Hsu, W. Höll, P.-C. Chiang, Removal of methomyl pesticide by adsorption using novel hypercrosslinked polymer of macronet MN-100, J. Environ. Eng. Manage. 17 (2007) 311–318.
  • C.-F. Chang, C.-Y. Chang, K.-E. Hsu, S.-C. Lee, Adsorptive removal of the pesticide methomyl using hypercrosslinked polymers, J. Hazard. Mater. 155 (2008) 295–304.10.1016/j.jhazmat.2007.11.057
  • M.S. El-Geundi, M.M. Nassar, T.E. Farrag, M.H. Ahmed, Methomyl adsorption onto cotton stalks activated carbon (CSAC): Equilibrium and process design, Proc. Environ. Sci. 17 (2013) 630–639.10.1016/j.proenv.2013.02.079
  • E.J. Zanto, S.A. Al-Muhtaseb, J.A. Ritter, Sol−gel-derived carbon aerogels and xerogels: Design of experiments approach to materials synthesis, Ind. Eng. Chem. Res. 41 (2002) 3151–3162.10.1021/ie020048g
  • B.S. Girgis, A.A. Attia, N.A. Fathy, Potential of nano-carbon xerogels in the remediation of dye-contaminated water discharges, Desalination 265 (2011) 169–176.10.1016/j.desal.2010.07.048
  • A.M. El-Khatat, S.A. Al-Muhtaseb, Advances in tailoring resorcinol-formaldehyde organic and carbon gels, Adv. Mater. 23 (2011) 2887–2903.10.1002/adma.v23.26
  • B.S Girgis, I.Y. El-Sherif, A.A. Attia, N.A. Fathy, Textural and adsorption characteristics of carbon xerogel adsorbents for removal of Cu(II) ions from aqueous solution, J. Non-Cryst. Solids 358 (2012) 741–747.10.1016/j.jnoncrysol.2011.12.004
  • B.S. Girgis, M.N. Alaya, I.Y. El-Sherif, A.A. Attia, N.A. Fathy, Development of porosity and copper(II) ion adsorption capacity by activated nano-carbon xerogels in relation to treatment schemes, Adsorpt. Sci. Technol. 29 (2011) 943–962.10.1260/0263-6174.29.10.943
  • F.L. Conceição, P.J.M. Carrott, M.M.L. Ribeiro Carrott, New carbon materials with high porosity in the 1–7 nm range obtained by chemical activation with phosphoric acid of resorcinol-formaldehyde aerogels, Carbon 47 (2009) 1874–1877.10.1016/j.carbon.2009.03.026
  • L. Zubizarreta, A. Arenillas, J.-P. Pirard, J.J. Pis, N. Job, Tailoring the textural properties of activated carbon xerogels by chemical activation with KOH, Microporous Mesoporous Mater. 115 (2008) 480–490.10.1016/j.micromeso.2008.02.023
  • R.S. Ribeiro, N.A. Fathy, A.A. Attia, A.M.T. Silva, J.L. Faria, H.T. Gomes, Activated carbon xerogels for the removal of the anionic azo dyes Orange II and Chromotrope 2R by adsorption and catalytic wet peroxide oxidation, Chem. Eng. J. 195–196 (2012) 112–121.10.1016/j.cej.2012.04.065
  • M.A. Elsayed, P.J. Hall, M.J. Heslop, Preparation and structure characterization of carbons prepared from resorcinol-formaldehyde resin by CO2 activation, Adsorption 13 (2007) 299–306.10.1007/s10450-007-9065-x
  • H.P. Boehm, Surface oxides on carbon and their analysis: A critical assessment, Carbon 40 (2002) 145–149.10.1016/S0008-6223(01)00165-8
  • K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity, (recommendations 1984), Pure Appl. Chem. 57 (1985) 603–619.
  • W.D. Harkins, G. Jura, Surfaces of solids. XIII. A vapor adsorption method for the determination of the area of a solid without the assumption of a molecular area, and the areas occupied by nitrogen and other molecules on the surface of a solid, J. Am. Chem. Soc. 66 (1944) 1366–1373.10.1021/ja01236a048
  • R.J. Dombrowski, D.R. Hyduke, C.M. Lastoskie, Pore size analysis of activated carbons from argon and nitrogen porosimetry using density functional theory, Langmuir 16 (2000) 5041–5050.10.1021/la990827a
  • C.A. Leon y Leon, J. Solar, V. Calemma, L. Radovic, Evidence for the protonation of basal plane sites on carbon, Carbon 30 (1992) 797–811.10.1016/0008-6223(92)90164-R
  • E. Fuente, J.A. Menéndez, D. Suárez, M.A. Montes-Morán, Basic surface oxides on carbon materials: A global view, Langmuir 19 (2003) 3505–3511.10.1021/la026778a
  • J.B. Lambert, Organic Structural Spectroscopy, Prentice Hall, Upper Saddle River, New Jersey, 1998.
  • G.H. Oh, C.H. Yun, C.R. Park, Role of KOH in the one-stage KOH activation of cellulosic biomass, Carbon Sci. 4 (2003) 180–184.
  • S. Bashkova, T.J. Bandosz, The effects of urea modification and heat treatment on the process of NO2 removal by wood-based activated carbon, J. Colloid Interface Sci. 333 (2009) 97–103.10.1016/j.jcis.2009.01.052
  • M. Jagtoyen, F. Derbyshire, Activated carbons from yellow poplar and white oak by H3PO4 activation, Carbon 36 (1998) 1085–1097.10.1016/S0008-6223(98)00082-7
  • X.L. Han, W. Wang, X.J. Ma, Adsorption characteristics of methylene blue onto low cost biomass material lotus leaf, Chem. Eng. J. 171 (2011) 1–8.10.1016/j.cej.2011.02.067
  • B.S. Inbaraj, K. Selvarani, N. Sulochana, Evaluation of a carbonaceous sorbent prepared from Pearl Millet Husk for its removal of basic dyes, J. Sci. Ind. Res. 61 (2002) 971–978.
  • N.A. Fathy, O.I. El-Shafey, L.B. Khalil, Effectiveness of alkali-acid treatment in enhancement the adsorption capacity for rice straw: The removal of methylene blue dye, ISRN Phys. Chem. 2013 (2013) 1–15.10.1155/2013/208087
  • W.J. Webeer, J.C. Morris, Kinetics of adsorption of carbon from solution, J. Sanitary Eng. Div.-ASCE 89 (1963) 31–59.
  • Z. Li, P.-H. Chang, J.-S. Jean, W.-T. Jiang, C.-J. Wang, Interaction between tetracycline and smectite in aqueous solution, J. Colloid Interface Sci. 341 (2010) 311–319.10.1016/j.jcis.2009.09.054
  • J. Li, J. Li, Y.Q. Lai, H.S. Song, Z.A. Zhang, Y.X. Liu, Influence of KOH activation techniques on pore structure and electrochemical property of carbon electrode materials, J. Central South Univ. Technol. 13 (2006) 360–366.10.1007/s11771-006-0049-x
  • E. Raymundo-Piñero, P. Azaïs, T. Cacciaguerra, D. Cazorla-Amorós, A. Linares-Solano, F. Béguin, KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation, Carbon 43 (2005) 786–795.10.1016/j.carbon.2004.11.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.