79
Views
2
CrossRef citations to date
0
Altmetric
Articles

An efficient sorbent for phosphate removal from wastewater: a new application of phosphate mine wastes from Ruseifa City—Jordan

, , , , &
Pages 9914-9924 | Received 04 Sep 2014, Accepted 18 Mar 2015, Published online: 13 Apr 2015

References

  • J.-W. Choi, S.-Y. Lee, K.-Y. Park, K.-B. Lee, D.-J. Kim, S.-H. Lee, Investigation of phosphorous removal from wastewater through ion exchange of mesostructure based on inorganic material, Desalination 266 (2011) 281–285.10.1016/j.desal.2010.08.015
  • E. Oguz, Removal of phosphate from aqueous solution with blast furnace slag, J. Hazard. Mater. 114 (2004) 131–137.10.1016/j.jhazmat.2004.07.010
  • S.H. Hartikainen, H. Helinä Hartikainen, Phosphorus retention by phlogopite-rich mine tailings, Appl. Geochem. 23 (2008) 2716–2723.10.1016/j.apgeochem.2008.06.004
  • J. Carrera, M. Sarrà, F.J. Lafuente, T. Vicent, Effect of different operational parameters in the enhanced biological phosphorus removal process. Experimental design and results, Environ. Technol. 22 (2001) 1439–1446.10.1080/09593330.2001.11090878
  • B. Nowack, A.T. Stone, Competitive adsorption of phosphate and phosphonates onto goethite, Water Res. 40 (2006) 2201–2209.10.1016/j.watres.2006.03.018
  • E. Galarneau, R. Gehr, Phosphorus removal from wastewaters: Experimental and theoretical support for alternative mechanisms, Water Res. 31 (1997) 328–338.10.1016/S0043-1354(96)00256-4
  • S. Jellali, M.A. Wahab, M. Anane, K. Riahi, L. Bousselmi, Phosphate mine wastes reuse for phosphorus removal from aquous solutions under dynamic conditions, J. Hazard. Mater. 184 (2010) 226–233.10.1016/j.jhazmat.2010.08.026
  • E. Moregenroth, P.A. Wilderer, Controlled biomass removal—The key parameter to achieve enhanced biological phosphorus removal in biofilm systems, Water Sci. Technol. 39 (1999) 33–40.10.1016/S0273-1223(99)00147-X
  • J. Li, X.-H. Xing, B.-Z. Wang, Characteristics of phosphorus removal from wastewater by biofilm sequencing batch reactor (SBR), Biochem. Eng. J. 16 (2003) 279–285.10.1016/S1369-703X(03)00071-8
  • A. Oehmen, P.C. Lemos, G. Carvalho, Z. Yuan, J. Keller, L.L. Blackall, M.A.M. Reis, Advances in enhanced biological phosphorus removal: From micro to macro scale, Water Res. 41 (2007) 2271–2300.10.1016/j.watres.2007.02.030
  • J. Keller, K. Subramaniam, J. Gosswein, P.F. Greenfield, Nutrient removal from industrial wastewater using single tank sequencing batch reactors, Water Sci. Technol. 35 (1997) 137–144.10.1016/S0273-1223(97)00104-2
  • C.M. Falkentoft, P. Harremoës, H. Mosbæk, The significance of zonation in a denitrifying, phosphorus removing biofilm, Water Res. 33 (1999) 3303–3310.10.1016/S0043-1354(99)00042-1
  • L.J. Sherwood, R.G. Qualls, Stability of phosphorus within a wetland soil following ferric chloride treatment to control eutrophication, Environ. Sci. Technol. 35 (2001) 4126–4131.10.1021/es0106366
  • Y. Jaffer, T.A. Clark, P. Pearce, S.A. Parsons, Potential phosphorus recovery by struvite formation, Water Res. 36 (2002) 1834–1842.10.1016/S0043-1354(01)00391-8
  • N. Bektas, H. Akbulut, H. Inan, A. Dimoglo, Removal of phosphate from aqueous solutions by electro-coagulation, J. Hazard. Mater 106 (2004) 101–105.10.1016/j.jhazmat.2003.10.002
  • K. Suzuki, Y. Tanaka, K. Kuroda, D. Hanajima, Y. Fukumoto, T. Yasuda, M. Waki, Removal and recovery of phosphorous from swine wastewater by demonstration crystallization reactor and struvite accumulation device, Bioresour. Technol. 98 (2007) 1573–1578.10.1016/j.biortech.2006.06.008
  • L. Pastor, D. Mangin, R. Barat, A. Seco, A pilot-scale study of struvite precipitation in a stirred tank reactor: Conditions influencing the process, Bioresour. Technol. 99 (2008) 6285–6291.10.1016/j.biortech.2007.12.003
  • K. Urano, H. Tachikawa, Process development for removal and recovery of phosphorus from wastewater by a new adsorbent. 1. Preparation method and adsorption capability of a new adsorbent, Ind. Eng. Chem. Res. 30 (1991) 1893–1896.10.1021/ie00056a032
  • M.S. Onyango, D. Kuchar, M. Kubota, H. Matsuda, Adsorptive removal of phosphate ions from aqueous solution using synthetic zeolite, Ind. Eng. Chem. Res. 46 (2007) 894–900.10.1021/ie060742m
  • I. de Vicente, P. Huang, F.-Ø. Andersen, H.S. Jensen, Phosphate adsorption by fresh and aged aluminum hydroxide. Consequences for lake restoration, Environ. Sci. Technol. 42 (2008) 6650–6655.10.1021/es800503s
  • B. Pan, J. Wu, B. Pan, L. Lv, W. Zhang, L. Xiao, X. Wang, X. Tao, S. Zheng, Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents, Water Res. 43 (2009) 4421–4429.10.1016/j.watres.2009.06.055
  • E.N. Peleka, E.A. Deliyanni, Adsorptive removal of phosphates from aqueous solutions, Desalination 245 (2009) 357–371.10.1016/j.desal.2008.04.050
  • E. Yildiz, Phosphate removal from water by fly ash using crossflow microfiltration, Sep. Purif. Technol. 35 (2004) 241–252.10.1016/S1383-5866(03)00145-X
  • M. Özacar, Adsorption of phosphate from aqueous solution onto alunite, Chemosphere 51 (2003) 321–327.
  • K. Riahi, B. Ben Thayer, A. Ben Mammou, A. Ben Ammar, M.H. Jaafoura, Biosorption characteristics of phosphates from aqueous solution onto Phoenix dactylifera L. date palm fibers, J. Hazard. Mater. 170 (2009) 511–519.10.1016/j.jhazmat.2009.05.004
  • T.L. Eberhardt, S.-H. Min, J.S. Han, Phosphate removal by refined aspen wood fiber treated with carboxymethyl cellulose and ferrous chloride, Bioresour. Technol. 97 (2006) 2371–2376.10.1016/j.biortech.2005.10.040
  • L. Johansson, Industrial by-products and natural substrata as phosphorus sorbents, Environ. Technol. 20 (1999) 309–316.10.1080/09593332008616822
  • N. Bellier, F. Chazarenc, Y. Comeau, Phosphorus removal from wastewater by mineral apatite, Water Res. 40 (2006) 2965–2971.10.1016/j.watres.2006.05.016
  • D. Wu, B. Zhang, C. Li, Z. Zhang, H. Kong, Simultaneous removal of ammounium and phosphate by zeolite synthesized from fly ash as influenced by salt treatment, J. Colloid Interface Sci. 304 (2006) 300–306.10.1016/j.jcis.2006.09.011
  • S. Karaca, A. Gurses, M. Ejder, M. Acikyildiz, Adsorptive removal of phosphate from aqueous solutions using raw and calcinated dolomite, J. Hazard. Mater. 128 (2006) 273–279.10.1016/j.jhazmat.2005.08.003
  • M. Al-Hwaiti, G. Matheis, G. Saffarini, Mobilization, redistribution and bioavailability of potentially toxic elements in Shidiya phosphorites, Southeast Jordan, Environ. Geol. 47 (2005) 431–444.10.1007/s00254-004-1173-2
  • E.F. Silva, A. Mlayah, C. Gomes, F. Noronha, A. Charef, C. Sequeira, V. Esteves, A.R.F. Marques, Heavy elements in the phosphorite from Kalaat Khasba mine (North-western Tunisia): Potential implications on the environment and human health, J. Hazard. Mater. 182 (2010) 232–245.10.1016/j.jhazmat.2010.06.020
  • K. Gnandi, G. Tchangbedji, K. Killi, G. Baba, K. Abbe, The impact of phosphate mine tailings on the bioaccumulation of heavy metals in marine fish and crustaceans from the coastal zone of Togo, Mine Water Environ. 25 (2006) 56–62.10.1007/s10230-006-0108-4
  • USAID Economic Development Program, Responding to the Water Crisis in Jordan, 2005.
  • National Research Council, Water for the Future: The West Bank and Gaza Strip, Israel, and Jordan, The National Academies Press, Washington, DC, 1999.
  • E. Salamah, Water Quality Degradation in Jordan (Impacts on Environment, Economy and Future Generation Resources), FES and RSCN, Amman, 1996, pp. 1–179.
  • Association of Fertilizer and Phosphate Chemists (AFPC Manual 10th Edition—Version 1.92).
  • T. Streek, N.N. Poletika, W.A. Jury, W.J. Farmer, Description of simazine transport with rate-limited, two-stage, linear and nonlinear sorption, Water Resour. Res. 31 (1995) 811–822.10.1029/94WR02822
  • A.M. Ghrair, J. Ingwersen, T. Streck, Nanoparticulate zeolitic tuff for immobilizing heavy metals in soil: Preparation and characterization, Water Air Soil Pollut. 203 (2009) 155–168.10.1007/s11270-009-9999-6
  • N.L. White, L.M. Zelazny, Charge properties in soil colloids, in: D.L. Sparks (Ed.), Soil Physical Chemistry, CRC Press, Boca Raton, FL, 1986, pp. 39–81.
  • C.H. Giles, T.H. MacEwan, S.N. Nakhwas, D. Smith, Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids, J. Chem. Phys. (1960) 3973–3993.
  • G. Sposito, The Chemistry of Soils, Oxford University Press, New York, NY, 1989.
  • A. Fernández-Nieves, F.J. de las Nieves, The role of ζ potential in the colloidal stability of different TiO2/electrolyte solution interfaces, Colloids Surf., A: Physicochem. Eng. Aspects 148 (1999) 231–243.10.1016/S0927-7757(98)00763-8
  • T. Riddick, Control of colloid stability through zeta potential; with a closing chapter on its relationship to cardiovascular disease, Published for ZETA–METER, INC, Livingston Publishing Company, Wynnewood, PA, 1968.
  • M.B. McBride, Environmental Chemistry of Soils, Oxford University Press, New York, NY, 1994.
  • A. Gürel, Adsorption characteristics of heavy metals in soil zones developed on spilite, Environ. Geol. 51(3) (2006) 333–340.10.1007/s00254-006-0329-7
  • A. Voegelin, R. Kretzschmar, Modelling sorption and mobility of cadmium and zinc in soils with scaled exchange coefficients, Eur. J. Soil. Sci. 54(2) (2003) 387–400.10.1046/j.1365-2389.2003.00525.x
  • S. Gao, W.J. Walker, R.A. Dahlgren, J. Bold, Simultaneous sorption of Cd, Cu, Ni, Zn, Pb, and Cr on soils treated with sewage sludge supernatant, Water Air Soil Pollut. 93(1–4) (1997) 331–345.
  • A. Hatira, A. Chokri, N. Zerai, A. Saadi, A. Rada, M. El-Meray, Heavy metals concentrations of soil and plants near the phosphate treatment industry Tunisia, Water, Waste Environ. Res. 5(2) (2005) 43–50.
  • B. Fubini, Surface reactivity in the pathogenic response to particulates, Environ. Health Perspect. 105 (1997) 1013–1020.10.1289/ehp.97105s51013
  • B. Fubini, V. Bolis, A. Cavenago, M. Volante, Physicochemical properties of crystalline silica dusts and their possible implication in various biological responses, Scand. J. Work Environ. Health 21(2) (1995) 9–14.
  • P.J. Borm, L. Tran, K. Donaldson, The carcinogenic action of crystalline silica: A review of the evidence supporting secondary inflammation-driven genotoxicity as a principal mechanism, Crit. Rev. Toxicol. 41(9) (2011) 756–770.10.3109/10408444.2011.576008
  • US-EPA, Ambient Levels and Noncancer Health Effects of Inhaled Crystalline and Amorphous Silica Health Issue Assessment, EPA/600/R-95/115, 1996, pp. 1–5.
  • A. El Maghraby, Phosphate mining wastes at Abu Tartur mine area, western desert of Egypt, Aust. J. Basic Appl. Sci. 6(10) (2012) 231–248.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.