153
Views
13
CrossRef citations to date
0
Altmetric
Articles

Fe2(MoO4)3 as a novel heterogeneous catalyst to activate persulfate for Rhodamine B degradation

, , , &
Pages 7898-7909 | Received 03 Dec 2014, Accepted 19 Mar 2015, Published online: 10 Apr 2015

References

  • A.D. Bokare, W. Choi, Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes, J. Hazard. Mater. 275 (2014) 121–135.10.1016/j.jhazmat.2014.04.054
  • A. Babuponnusami, K. Muthukumar, A review on Fenton and improvements to the Fenton process for wastewater treatment, J. Environ. Chem. Eng. 2 (2014) 557–572.10.1016/j.jece.2013.10.011
  • K. Govindan, M. Raja, M. Noel, E.J. James, Degradation of pentachlorophenol by hydroxyl radicals and sulfate radicals using electrochemical activation of peroxomonosulfate, peroxodisulfate and hydrogen peroxide, J. Hazard. Mater. 272 (2014) 42–51.10.1016/j.jhazmat.2014.02.036
  • G.P. Anipsitakis, D.D. Dionysiou, Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt, Environ. Sci. Technol. 37 (2003) 4790–4797.10.1021/es0263792
  • C.W. Wang, C. Liang, Oxidative degradation of TMAH solution with UV persulfate activation, Chem. Eng. J. 254 (2014) 472–478.10.1016/j.cej.2014.05.116
  • M. Nie, Y. Yang, Z. Zhang, C. Yan, X. Wang, H. Li, W. Dong, Degradation of chloramphenicol by thermally activated persulfate in aqueous solution, Chem. Eng. J. 246 (2014) 373–382.10.1016/j.cej.2014.02.047
  • Y.F. Rao, L. Qu, H. Yang, W. Chu, Degradation of carbamazepine by Fe(II)-activated persulfate process, J. Hazard. Mater. 268 (2014) 23–32.10.1016/j.jhazmat.2014.01.010
  • X. Jiang, Y. Wu, P. Wang, H. Li, W. Dong, Degradation of bisphenol A in aqueous solution by persulfate activated with ferrous ion, Environ. Sci. Pollut. Res. 20 (2013) 4947–4953.10.1007/s11356-013-1468-5
  • J. Deng, Y. Shao, N. Gao, Y. Deng, C. Tan, S. Zhou, Zero-valent iron/persulfate(Fe0/PS) oxidation acetaminophen in water, Int. J. Environ. Sci. Technol. 11 (2013) 881–890.
  • J. Yan, M. Lei, L. Zhu, M.N. Anjum, J. Zou, H. Tang, Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate, J. Hazard. Mater. 186 (2011) 1398–1404.10.1016/j.jhazmat.2010.12.017
  • Y. Leng, W. Guo, X. Shi, Y. Li, A. Wang, F. Hao, L. Xing, Degradation of Rhodamine B by persulfate activated with Fe3O4: Effect of polyhydroquinone serving as an electron shuttle, Chem. Eng. J. 240 (2014) 338–343.10.1016/j.cej.2013.11.090
  • L. Zhu, Z. Ai, W. Ho, L. Zhang, Core–shell Fe-Fe2O3 nanostructures as effective persulfate activator for degradation of methyl orange, Sep. Purif. Technol. 108 (2013) 159–165.10.1016/j.seppur.2013.02.016
  • J. Yan, L. Zhu, Z. Luo, Y. Huang, H. Tang, M. Chen, Oxidative decomposition of organic pollutants by using persulfate with ferrous hydroxide colloids as efficient heterogeneous activator, Sep. Purif. Technol. 106 (2013) 8–14.10.1016/j.seppur.2012.12.012
  • S.-Y. Oh, S.-G. Kang, D.-W. Kim, P.C. Chiu, Degradation of 2,4-dinitrotoluene by persulfate activated with iron sulfides, Chem. Eng. J. 172 (2011) 641–646.10.1016/j.cej.2011.06.023
  • Y. Anjaneyulu, N. Sreedhara Chary, D. Samuel Suman Raj, Decolourization of industrial effluents—Available methods and emerging technologies—A review, Rev. Environ. Sci. Bio/Technol. 4 (2005) 245–273.10.1007/s11157-005-1246-z
  • S.H. Tian, Y.T. Tu, D.S. Chen, X. Chen, Y. Xiong, Degradation of acid orange II at neutral pH using Fe2(MoO4)3 as a heterogeneous Fenton-like catalyst, Chem. Eng. J. 169 (2011) 31–37.10.1016/j.cej.2011.02.045
  • H. Shi, X. Wang, R.M. Hua, Z. Zhang, J. Tang, Epoxidation of α,β-unsaturated acids catalyzed by tungstate(VI) or molybdate(VI) in aqueous solvents: a specific direct oxygen transfer mechanism, Tetrahedron 61 (2005) 1297–1307.10.1016/j.tet.2004.11.056
  • C. Peng, L. Gao, S. Yang, J. Sun, A general precipitation strategy for large-scale synthesis of molybdate nanostructures, Chem. Commun. (2008) 5601–5603.10.1039/b812033a
  • W.M. Shaheen, Thermal behaviour of pure and binary Fe(NO3)3·9H2O and (NH4)6Mo7O24·4H2O systems, Mater. Sci. Eng.: A 445–446 (2007) 113–121.10.1016/j.msea.2006.09.007
  • A.A. Belhekar, S. Ayyappan, A.V. Ramaswamy, FT-IR studies on the evolution of different phases and their interaction in ferric molybdate—Molybdenum trioxide catalysts, J. Chem. Technol. Biotechnol. 59 (1994) 395–402.
  • F. Trifirò, S. Notarbartolo, I. Pasquon, The nature of the active component in a Fe2O3 MoO3 catalyst: II. Study of the variations occurring during high temperature treatment, J. Catal. 22 (1971) 324–332.
  • Z.C.B. Xiao, Y. Yu, J.R. Barker, Free radical reactions involving Cl·, Cl2·−, and SO4·− in the 248 nm photolysis of aqueous solutions containing S2O82−and Cl−, J. Phys. Chem. 108 (2004) 295–308.
  • Y. Deng, C.M. Ezyske, Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate, Water Res. 45 (2011) 6189–6194.10.1016/j.watres.2011.09.015
  • A. Martínez-de la Cruz, U.M.G. Pérez, Photocatalytic properties of BiVO4 prepared by the co-precipitation method: Degradation of Rhodamine B and possible reaction mechanisms under visible irradiation, Mater. Res. Bull. 45 (2010) 135–141.10.1016/j.materresbull.2009.09.029
  • T. Wu, G. Liu, J. Zhao, Photo assisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of Rhodamine B under visible light irradiation in aqueous TiO2 dispersions, J. Phys. Chem. B 102 (1998) 5845–5851.
  • Z. He, S. Yang, Y. Ju, C. Sun, Microwave photocatalytic degradation of Rhodamine B using TiO2 supported on activated carbon: Mechanism implication, J. Environ. Sci. 21 (2009) 268–272.10.1016/S1001-0742(08)62262-7
  • S. Yang, X. Yang, X. Shao, R. Niu, L. Wang, Activated carbon catalyzed persulfate oxidation of Azo dye acid orange 7 at ambient temperature, J. Hazard. Mater. 186 (2011) 659–666.10.1016/j.jhazmat.2010.11.057
  • H.W.S. Chen Ju Liang, Identification of sulfate and hydroxyl radicals in thermally activated persulfate, Ind. Eng. Chem. Res. 48 (2009) 5558–5562.
  • W. Chu, Y.R. Wang, H.F. Leung, Synergy of sulfate and hydroxyl radicals in UV/S2O82−/H2O2 oxidation of iodinated X-ray contrast medium iopromide, Chem. Eng. J. 178 (2011) 154–160.10.1016/j.cej.2011.10.033
  • P. Neta, Rate constants for reactions of inorganic radicals in aqueous solution, J. Phys. Chem. Ref. Data 17 (1988) 1027–1284.10.1063/1.555808
  • G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, W. Tsang, Critical review of rate constants for reactions of hydrated electrons chemical kinetic data base for combustion chemistry. Part 3: Propane, J. Phys. Chem. Ref. Data 17 (1988) 513.10.1063/1.555805
  • A. Aguiar, A. Ferraz, Fe3+- and Cu2+-reduction by phenol derivatives associated with Azure B degradation in Fenton-like reactions, Chemosphere 66 (2007) 947–954.10.1016/j.chemosphere.2006.05.067
  • W.J.C. Christopher, K. Duesterberg, T. David Waite, Fenton-mediated oxidation in the presence and absence of oxygen, Environ. Sci. Technol. 39 (2005) 5052–5058.
  • J.J.P. Ruzhong Chen, Role of quinone intermediates as electron shuttles in Fenton and photoassisted Fenton oxidations of aromatic compounds, Environ. Sci. Technol. 31 (1997) 2339–2406.
  • A.C. Francesco Minisci, Electron-transfer processes peroxydisulfate, a useful and versatile reagent in organic chemistry, Acc. Chem. Res. 16 (1983) 27–32.
  • Y. Wang, H. Zhao, M. Li, J. Fan, G. Zhao, Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid, Appl. Catal. B: Environ. 147 (2014) 534–545.10.1016/j.apcatb.2013.09.017
  • T. Zhang, C. Li, J. Ma, H. Tian, Z. Qiang, Surface hydroxyl groups of synthetic α-FeOOH in promoting OH generation from aqueous ozone: Property and activity relationship, Appl. Catal. B: Environ. 82 (2008) 131–137.10.1016/j.apcatb.2008.01.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.