92
Views
2
CrossRef citations to date
0
Altmetric
Articles

Influence of intermittent aeration and organic loading rate on lab-scale constructed wetland systems treating synthetic wastewater

, &
Pages 9651-9659 | Received 31 Aug 2014, Accepted 13 Mar 2015, Published online: 25 Jul 2015

References

  • L.X. Gong, L. Jun, Q. Yang, S.Y. Wang, B. Ma, Y.Z. Peng, Biomass characteristics and simultaneous nitrification–denitrification under long sludge retention time in an integrated reactor treating rural domestic sewage, Bioresour. Technol. 119 (2012) 277–284.10.1016/j.biortech.2012.05.067
  • W.X. Liu, M.F. Dahab, R.Y. Surampalli, Nitrogen transformations modeling in subsurface-flow constructed wetlands, Water Environ. Res. 77(3) (2005) 246–258.10.2175/106143005X41825
  • H. Brix, C.A. Arias, The use of vertical flow constructed wetlands for on-site treatment of domestic wastewater: New Danish guidelines, Ecol. Eng. 25(5) (2005) 491–500.10.1016/j.ecoleng.2005.07.009
  • V.A. Tsihrintzis, C.S. Akratos, G.D. Gikas, D. Karamouzis, A.N. Angelakis, Performance and cost comparison of a FWS and a VSF constructed wetland system, Environ. Technol. 28(6) (2007) 621–628.10.1080/09593332808618820
  • C.C. Tanner, J. D’Eugenio, G.B. McBride, J.P.S. Sukias, K. Thompson, Effect of water level fluctuation on nitrogen removal from constructed wetland mesocosms, Ecol. Eng. 12(1–2) (1999) 67–92.10.1016/S0925-8574(98)00055-X
  • D. Austin, Influence of cation exchange capacity (CEC) in a tidal flow, flood and drain wastewater treatment wetland, Ecol. Eng. 28(1) (2006) 35–43.10.1016/j.ecoleng.2006.03.010
  • D. Austin, J. Nivala, Energy requirements for nitrification and biological nitrogen removal in engineered wetlands, Ecol. Eng. 35(2) (2009) 184–192.10.1016/j.ecoleng.2008.03.002
  • S.Q. Xia, J.Y. Li, R.C. Wang, Nitrogen removal performance and microbial community structure dynamics response to carbon nitrogen ratio in a compact suspended carrier biofilm reactor, Ecol. Eng. 32(3) (2008) 256–262.10.1016/j.ecoleng.2007.11.013
  • H. Brix, C.A. Arias, M. Del Bubba, Media selection for sustainable phosphorus removal in subsurface flow constructed wetlands, Water Sci. Technol. 44(11–12) (2001) 47–54.
  • J. Vymazal, Removal of nutrients in various types of constructed wetlands, Sci. Total Environ. 380(1–3) (2007) 48–65.10.1016/j.scitotenv.2006.09.014
  • H.Y. Dong, Z.M. Qiang, T.G. Li, H. Jin, W.D. Chen, Effect of artificial aeration on the performance of vertical-flow constructed wetland treating heavily polluted river water, J. Environ. Sci. 24(4) (2012) 596–601.10.1016/S1001-0742(11)60804-8
  • S.Y. Gebremariam, M.W. Beutel, Nitrate removal and DO levels in batch wetland mesocosms: Cattail (Typha spp.) versus bulrush (Scirpus spp.), Ecol. Eng. 34(1) (2008) 1–6.10.1016/j.ecoleng.2008.06.005
  • L.Y. Zhang, L. Zhang, Y.D. Liu, Y.W. Shen, H. Liu, Y. Xiong, Effect of limited artificial aeration on constructed wetland treatment of domestic wastewater, Desalination 250(3) (2010) 915–920.10.1016/j.desal.2008.04.062
  • T.L. Ingersoll, L.A. Baker, Nitratfe removal in wetland microcosms, Water Res. 32(3) (1998) 677–684.10.1016/S0043-1354(97)00254-6
  • S.L. Lu, H.Y. Hu, Y.X. Sun, J. Yang, Effect of carbon source on the denitrification in constructed wetlands, J. Environ. Sci. 21(8) (2009) 1036–1043.10.1016/S1001-0742(08)62379-7
  • Y.J. Zhao, B. Liu, W.G. Zhang, Y. Ouyang, S.Q. An, Performance of pilot-scale vertical-flow constructed wetlands in responding to variation in influent C/N ratios of simulated urban sewage, Bioresour. Technol. 101(6) (2010) 1693–1700.10.1016/j.biortech.2009.10.002
  • J.L. Fan, W.G. Wang, B. Zhang, Y.Y. Guo, H.H. Ngo, W.S. Guo, J. Zhang, H. Wu, Nitrogen removal in intermittently aerated vertical flow constructed wetlands: Impact of influent COD/N ratios, Bioresour. Technol. 1430 (2013) 461–466.10.1016/j.biortech.2013.06.038
  • C.F. Han, J.X. Liu, H.W. Liang, X.S. Guo, L. Li, An innovative integrated system utilizing solar energy as power for the treatment of decentralized wastewater, J. Environ. Sci. 25(2) (2013) 274–279.10.1016/S1001-0742(12)60034-5
  • S.L. Gui, S.F. Wang, Y.M. Wu, J.H. Xiong, Z.Q. Ao, Treatment of rural domestic wastewater with combined biofilter and constructed wetlands driven by solar energy, Technol. Water Treat. 39(8) (2013) 134–136.
  • Y.Q. Zhao, G. Sun, S.J. Allen, Anti-sized reed bed system for animal wastewater treatment: A comparative study, Water Res. 38(12) (2004) 2907–2917.10.1016/j.watres.2004.03.038
  • G. Langergraber, R. Haberl, J. Laber, A. Pressl, Evaluation of substrate clogging processes in vertical flow constructed wetlands, Water Sci. Technol. 48(5) (2003) 25–34.
  • American Public Health Association (APHA), Standard Methods for the Examination of Water and Wastewater, Twenty-first ed., AWWA and WPCF, Washington DC, USA, 2005.
  • W.L. Jia, J. Zhang, J. Wu, H.J. Xie, B. Zhang, Effect of intermittent operation on contaminant removal and plant growth in vertical flow constructed wetlands: A microcosm experiment, Desalination 262(1–3) (2010) 202–208.10.1016/j.desal.2010.06.012
  • Y.S. Hu, Y.Q. Zhao, X.H. Zhao, High rate nitrogen removal in an alum sludge-based intermittent aeration constructed wetland, Environ. Sci. Technol. 46(8) (2012) 4583–4590.10.1021/es204105h
  • P. Cooper, M. Smith, H. Maynard, The design and performance of a nitrifying vertical-flow reed bed treatment system, Water Sci. Technol. 35(5) (1997) 215–221.10.1016/S0273-1223(97)00071-1
  • J. Vymazal, Removal of BOD in constructed wetlands with horizontal sub-surface flow: Czech experience, Water Sci. Technol. 40(3) (1999) 133–138.10.1016/S0273-1223(99)00456-4
  • C. Ouellet-Plamondon, F. Chazarenc, Y. Comeau, J. Brisson, Artificial aeration to increase pollutant removal efficiency of constructed wetlands in cold climate, Ecol. Eng. 27(3) (2006) 258–264.10.1016/j.ecoleng.2006.03.006
  • C.A. Prochaska, A.I. Zouboulis, K.M. Eskridge, Performance of pilot-scale vertical-flow constructed wetlands, as affected by season, substrate, hydraulic load and frequency of application of simulated urban sewage, Ecol. Eng. 31(1) (2007) 57–66.10.1016/j.ecoleng.2007.05.007
  • J. Vymazal, L. Kröpfelová, Wastewater Treatment in Constructed Wetlands with Horizontal Sub-surface Flow, Springer, Germany, 2008.
  • S.B. Wu, D.X. Zhang, D. Austin, R.J. Dong, C.L. Pang, Evaluation of a lab-scale tidal flow constructed wetland performance: Oxygen transfer capacity, organic matter and ammonium removal, Ecol. Eng. 37(11) (2011) 1789–1795.10.1016/j.ecoleng.2011.06.026
  • E.A. Korkusuz, M. Beklioğlu, G.N. Demirer, Comparison of the treatment performances of blast furnace slag-based and gravel-based vertical flow wetlands operated identically for domestic wastewater treatment in Turkey, Ecol. Eng. 24(3) (2005) 185–198.10.1016/j.ecoleng.2004.10.002
  • A. Albuquerque, J. Oliveira, S. Semitela, L. Amaral, Influence of bed media characteristics on ammonia and nitrate removal in shallow horizontal subsurface flow constructed wetlands, Bioresour. Technol. 100(24) (2009) 6269–6277.10.1016/j.biortech.2009.07.016
  • F.X. Ye, Y. Li, Enhancement of nitrogen removal in towery hybrid constructed wetland to treat domestic wastewater for small rural communities, Ecol. Eng. 35(7) (2009) 1043–1050.10.1016/j.ecoleng.2009.03.009
  • G. Sun, Y. Zhao, S. Allen, Enhanced removal of organic matter and ammoniacal-nitrogen in a column experiment of tidal flow constructed wetland system, J. Biotechnol. 115(2) (2005) 189–197.10.1016/j.jbiotec.2004.08.009
  • M. Prosnansky, Y. Sakakibara, M. Kuroda, High-rate denitrification and SS rejection by biofilm-electrode reactor (BER) combined with microfiltration, Water Res. 36(19) (2002) 4801–4810.10.1016/S0043-1354(02)00206-3
  • S. Szekeres, I. Kiss, M. Kalman, M.I.M. Soares, Microbial population in a hydrogen-dependent denitrification reactor, Water Res. 36(16) (2002) 4088–4094.10.1016/S0043-1354(02)00130-6
  • C.G. Lee, T.D. Fletcher, G.Z. Sun, Nitrogen removal in constructed wetland systems, Eng. Life Sci. 9(1) (2009) 11–22.10.1002/elsc.v9:1
  • S.A. Ong, K. Uchiyama, D. Inadama, Y.J. Ishida, K. Yamagiwa, Performance evaluation of laboratory scale up-flow constructed wetlands with different designs and emergent plants, Bioresour. Technol. 101(19) (2010) 7239–7244.10.1016/j.biortech.2010.04.032
  • G. Maltais-Landry, R. Maranger, J. Brisson, F. Chazarenc, Nitrogen transformations and retention in planted and artificially aerated constructed wetlands, Water Res. 43(2) (2009) 535–545.10.1016/j.watres.2008.10.040
  • C.A. Arias, M. Del Bubba, H. Brix, Phosphorus removal by sands for use as media in subsurface flow constructed reed beds, Water Res. 35(5) (2001) 1159–1168.10.1016/S0043-1354(00)00368-7
  • H.K. Pant, K.R. Reddy, E. Lemon, Phosphorus retention capacity of root bed media of sub-surface flow constructed wetlands, Ecol. Eng. 17(4) (2001) 345–355.10.1016/S0925-8574(00)00134-8
  • M. Martín, S. Gargallo, C. Hernández-Crespo, N. Oliver, Phosphorus and nitrogen removal from tertiary treated urban wastewaters by a vertical flow constructed wetland, Ecol. Eng. 61 (2013) 34–42.10.1016/j.ecoleng.2013.09.046
  • Y. Chen, H.B. Guerra, K.S. Min, Y. Kim, Operation of the vertical subsurface flow and partly submersed stormwater wetland with an intermittent recycle, Desalin. Water Treat. 38(1–3) (2012) 349–359.10.1080/19443994.2012.664403
  • Z. Peng, Y. Peng, L. Gui, X. Liu, Competition for single carbon source between denitrification and phosphorus release in sludge under anoxic condition, Chin. J. Chem. Eng. 18(3) (2010) 472–477.10.1016/S1004-9541(10)60245-5
  • G. Langergraber, J. Šimůnek, Modeling variably saturated water flow and multicomponent reactive transport in constructed wetlands, Vadose Zone J. 4(2005) 924–938.10.2136/vzj2004.0166
  • J.L. Kumar, Y.Q. Zhao, A.O. Babatunde, Process-based modelling of phosphorus removal in a novel constructed wetland system using dewatered alum-sludge as substrate, Water Sci. Technol. 64(3) (2011) 774–780.10.2166/wst.2011.711

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.