147
Views
11
CrossRef citations to date
0
Altmetric
Articles

Removal of tetracycline using new biocomposites from aqueous solutions

Pages 9982-9992 | Received 20 Jan 2015, Accepted 18 Mar 2015, Published online: 20 Apr 2015

References

  • J.E. Drewes, Removal of pharmaceutical residues during wastewater treatment, in: M. Petrovic, D. Barcelo (Eds.), Analysis, Fate and Removal of Pharmaceuticals in the Water Cycle, vol. 50, Wilson & Wilson's, Elsevier, Amsterdam, 2007, pp. 427–447.
  • J.L. Martinez, Environmental pollution by antibiotics and by antibiotic resistance determinants, Environ. Pollut. 157 (2009) 2893–2902.10.1016/j.envpol.2009.05.051
  • A.K. Sarmah, M.T. Meyer, A.B.A. Boxall, A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment, Chemosphere 65 (2006) 725–759.10.1016/j.chemosphere.2006.03.026
  • M. Erşan, E. Bağda, E. Bağda, Investigation of kinetic and thermodynamic characteristics of removal of tetracycline with sponge like, tannin based cryogels, Colloids Surf., B 104 (2013) 75–82.10.1016/j.colsurfb.2012.11.034
  • A.J. Watkinson, E.J. Murby, S.D. Costanzo, Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling, Water Res. 41 (2007) 4164–4176.10.1016/j.watres.2007.04.005
  • J.P. Bound, N. Voulvoulis, Pharmaceuticals in the aquatic environment—A comparison of risk assessment strategies, Chemosphere 56 (2004) 1143–1155.10.1016/j.chemosphere.2004.05.010
  • M.E. Parolo, M.C. Savini, J.M. Vallés, M.T. Baschini, M.J. Avena, Tetracycline adsorption on montmorillonite: pH and ionic strength effects, Appl. Clay Sci. 40 (2008) 179–186.10.1016/j.clay.2007.08.003
  • Y. Zhao, Y. Tan, Y. Guo, X. Gu, X. Wang, Y. Zhang, Interactions of tetracycline with Cd (II), Cu (II) and Pb (II) and their cosorption behavior in soils, Environ. Pollut. 180 (2013) 206–213.10.1016/j.envpol.2013.05.043
  • E. Bağda, M. Erşan, E. Bağda, Investigation of adsorptive removal of tetracycline with sponge like, Rosa canina gall extract modified, polyacrylamide cryogels, J. Environ. Chem. Eng. 1 (2013) 1079–1084.10.1016/j.jece.2013.08.024
  • E. Tanis, K. Hanna, E. Emmanuel, Experimental and modeling studies of sorption of tetracycline onto iron oxides-coated quartz, Colloids Surf., A 327 (2008) 57–63.10.1016/j.colsurfa.2008.06.013
  • X.R. Xu, X.Y. Li, Sorption and desorption of antibiotic tetracycline on marine sediments, Chemosphere 78 (2010) 430–436.10.1016/j.chemosphere.2009.10.045
  • P.H. Chang, J.S. Jean, W.T. Jiang, Z.H. Li, Mechanism of tetracycline sorption on rectorite, Colloids Surf., A 339 (2009) 94–99.10.1016/j.colsurfa.2009.02.002
  • W.R. Chen, C.H. Huang, Adsorption and transformation of tetracycline antibiotics with aluminum oxide, Chemosphere 79 (2010) 779–785.10.1016/j.chemosphere.2010.03.020
  • D. Zhang, H. Niu, X. Zhang, Z. Meng, Y. Cai, Strong adsorption of chlorotetracycline on magnetite nanoparticles, J. Hazard. Mater. 192 (2011) 1088–1093.10.1016/j.jhazmat.2011.06.015
  • H. Liu, Y. Yang, J. Kang, M. Fan, J. Qu, Removal of tetracycline from water by Fe–Mn binary oxide, Environ. Sci. 24 (2012) 242–247.10.1016/S1001-0742(11)60763-8
  • P. Chang, Z. Li, T. Yu, S. Munkhbayer, T. Kuo, Y. Hung, J. Jean, K. Lin, Sorptive removal of tetracycline from water by palygorskite, J. Hazard. Mater. 165 (2009) 148–155.10.1016/j.jhazmat.2008.09.113
  • Y. Gao, Y. Li, L. Zhang, H. Huang, J. Hu, S.M. Shah, X. Su, Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide, J. Colloid Interface Sci. 368 (2012) 540–546.10.1016/j.jcis.2011.11.015
  • Y. Wan, Y. Bao, Q. Zhou, Simultaneous adsorption and desorption of cadmium and tetracycline on cinnamon soil, Chemosphere 80 (2010) 807–812.10.1016/j.chemosphere.2010.04.066
  • S.A. Sassman, L.S. Lee, Sorption of three tetracyclines by several soils: Assessing the role of pH and cation exchange, Environ. Sci. Technol. 39 (2005) 7452–7459.10.1021/es0480217
  • H. Chen, H. Luo, Y. Lan, T. Dong, B. Hu, Y. Wang, Removal of tetracycline from aqueous solutions using polyvinylpyrrolidone (PVP-K30) modified nanoscale zero valent iron, J. Hazard. Mater. 192 (2011) 44–53.
  • A.L.P.F. Caroni, C.R.M. de Lima, M.R. Pereira, J.L.C. Fonseca, The kinetics of adsorption of tetracycline on chitosan particles, J. Colloid Interface Sci. 340 (2009) 182–191.10.1016/j.jcis.2009.08.016
  • M. Brigante, P.C. Schulz, Remotion of the antibiotic tetracycline by titania and titania–silica composed materials, J. Hazard. Mater. 192 (2011) 1597–1608.10.1016/j.jhazmat.2011.06.082
  • I. de Godos, R. Muñoz, B. Guieysse, Tetracycline removal during wastewater treatment in high-rate algal ponds, J. Hazard. Mater. 229–230 (2012) 446–449.10.1016/j.jhazmat.2012.05.106
  • I. Langmuir, The constitution and fundamental properties of solids and liquids, J. Am. Chem. Soc. 38 (1916) 2221–2295.10.1021/ja02268a002
  • Y.S. Ho, Removal of copper ions from aqueous solution by tree fern, Water Res. 37 (2003) 2323–2330.10.1016/S0043-1354(03)00002-2
  • B. Zhu, Q. Feng, Q. Wang, T. Duan, L. Ou, G. Zhang, Y. Lu, Adsorption of Cu(II) ions from aqueous solutions on modified chrysotile: Thermodynamic and kinetic studies, Appl. Clay Sci. 80–81 (2013) 38–45.
  • E.W. Meijer, Jacobus Henricus van‘t Hoff; hundred years of impact on stereochemistry in the Netherlands, Angew. Chem. Int. Ed. 40 (2001) 3783–3789.10.1002/(ISSN)1521-3773
  • U.A. Guler, M. Sarioglu, Mono and binary component biosorption of Cu(II), Ni(II), and Methylene Blue onto raw and pretreated, S. cerevisiae: Equilibrium and kinetics, Desalin. Water Treat. 52 (2013) 1–18.
  • M. Mansal, U. Garg, D. Singh, V.K. Garg, Removal of Cr(VI) from aqueous solutions using pre-consumer processing agricultural waste: A case study of rice husk, J. Hazard. Mater. 162 (2006) 312–320.
  • D.A. Skoog, J.J. Leary, Principles of Instrumental Analysis, fourth ed., Saunders College Publishing Co., New York, NY, 1992.
  • J.K. Yu, M. Tong, X.M. Sun, B.H. Li, Enhanced and selective adsorption of Pb(II) and Cu(II) by EDTA-modified biomass of baker’s yeast, Bioresour. Technol. 99 (2009) 2588–2593.
  • F. Pagnanelli, M. Petrangeli Papini, M. Trifoni, F. Vegliò, L. Toro, Biosorption of metal ions on Arthrobacter sp.: Biomass characterization and biosorption modeling, Environ. Sci. Technol. 34 (2000) 2773–2778.10.1021/es991271g
  • S.K. Kazy, P. Sar, S.P. Singh, Asish K. Sen, S.F. D’Souza, Extracellular polysaccharides of a copper-sensitive and a copper-resistant Pseudomonas aeruginosa strain: Synthesis, chemical nature and copper binding, World J. Microbiol. Biotechnol. 18 (2002) 583–588.10.1023/A:1016354713289
  • S. Aytas, D.A. Turkozu, C. Gok, Biosorption of uranium(VI) by bi-functionalized low cost biocomposite adsorbent, Desalination 280 (2011) 354–362.10.1016/j.desal.2011.07.023
  • Q. Peng, Y. Liu, G. Zeng, W. Xu, C. Yang, J. Zhang, Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution, J. Hazard. Mater. 177 (2010) 676–682.10.1016/j.jhazmat.2009.12.084
  • S.M. Nomanbhay, K. Palanisamy, Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal, Electron. J. Biotechnol. 8 (2005) 43–53.
  • H. Feldmann, Horst Yeast, Molecular and Cell Bio, Wiley-Blackwell, Germany, 2010.
  • A. Boger, B. Heise, C. Troll, O. Marti, B. Rieger, Mechanical and temperature dependant properties, structure and phase transitions of elastic polypropylenes, Eur. Polym. J. 43 (2007) 634–643.10.1016/j.eurpolymj.2006.11.003
  • N.S. Maurya, A.K. Mittal, P. Cornel, E. Rother, Biosorption of dyes using dead macro fungi: Effect of dye structure, ionic strength and pH, Bioresour. Technol. 97 (2006) 512–521.10.1016/j.biortech.2005.02.045
  • M.M. Motsa, J.M. Thwala, T.A.M. Msagati, B.B. Mamba, The potential of melt-mixed polypropylene–zeolite blends in the removal of heavy metals from aqueous media, Phys. Chem. Earth 36 (2011) 1178–1188.10.1016/j.pce.2011.07.072
  • K. Kim, H.B. Lee, H.K. Park, K.S. Shin, Easy deposition of Ag onto polystyrene beads for developing surface-enhanced-Raman-scattering-based molecular sensors, J. Colloid Interface Sci. 318 (2008) 195–201.10.1016/j.jcis.2007.09.025
  • Z. Chen, T. Wang, X. Jin, Z. Chen, M. Megharaj, R. Naidu, Multifunctional kaolinite-supported nanoscale zero-valent iron used for the adsorption and degradation of crystal violet in aqueous solution, J. Colloid Interface Sci. 398 (2013) 59–66.10.1016/j.jcis.2013.02.020
  • M. El Haddad, A. Regti, M.R. Laamari, R. Slimani, R. Mamouni, S.E. Antri, S. Lazar, Calcined mussel shells as a new and eco-friendly biosorbent to remove textile dyes from aqueous solutions, J. Taiwan Inst. Chem. Eng. 45 (2014) 533–540.10.1016/j.jtice.2013.05.002
  • M. El Haddad, R. Mamounic, N. Saffaj, S. Lazar, Removal of a cationic dye — Basic Red 12 — from aqueous solution by adsorption onto animal bone meal, J. Assoc. Arab Univ. Basic Appl. Sci. 12 (2012) 48–54.
  • U.A. Guler, M. Sarioglu, Removal of tetracycline from wastewater using pumice stone: Equilibrium, kinetic and thermodynamic studies, J. Environ. Health Sci. Eng. doi: 10.1186/2052-336X-12-79. Available from: <http://www.ijehse.com/content/12/1/79>.
  • M. El Haddad, A. Regti, R. Slimani, S. Lazar, Assessment of the biosorption kinetic and thermodynamic for the removal of safranin dye from aqueous solutions using calcined mussel shells, J. Ind. Eng. Chem. 20 (2014) 717–724.10.1016/j.jiec.2013.05.038
  • R. Slimani, I. El Ouahabi, F. Abidi, M. El Haddad, A. Regti, M.R. Laamari, S.E. Antri, S. Lazar, Calcined eggshells as a new biosorbent to remove basic dye from aqueous solutions: Thermodynamics, kinetics, isotherms and error analysis, J. Taiwan Inst. Chem. Eng. 45 (2014) 1578–1587.10.1016/j.jtice.2013.10.009
  • Y. Lin, S. Xu, J. Li, Fast and highly efficient tetracyclines removal from environmental waters by graphene oxide functionalized magnetic particles, Chem. Eng. J. 225 (2013) 679–685.10.1016/j.cej.2013.03.104
  • K. Li, F. Ji, Y. Liu, Z. Tong, X. Zhan, Z. Hu, Adsorption removal of tetracycline from aqueous solution by anaerobic granular sludge: Equilibrium and kinetic studies, Water Sci. Technol. 67 (2013) 1490–1496.10.2166/wst.2013.016
  • M. Islam, R.K. Patel, Evaluation of removal efficiency of fluoride from aqueous solution using quick lime, J. Hazard. Mater. 143 (2007) 303–310.10.1016/j.jhazmat.2006.09.030
  • S. Lagergren, About the theory of so-called adsorption of soluble substances, K. Sven. Vetenskapsakad. Handl. 24 (1898) 1–39.
  • G. Crini, H.N. Peindy, F. Gimbert, C. Robert, Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: Kinetic and equilibrium studies, Sep. Purif. Technol. 53 (2007) 97–110.10.1016/j.seppur.2006.06.018
  • N. Gupta, A.K. Kushwaha, M.C. Chattopadhyaya, Adsorptive removal of Pb2+, Co2+ and Ni2+ by hydroxyapatite/chitosan composite from aqueous solution, J. Taiwan Inst. Chem. Eng. 43 (2012) 125–131.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.