126
Views
15
CrossRef citations to date
0
Altmetric
Articles

Experimental comparisons of three submerged plants for reclaimed water purification through nutrient removal

, , , , , & show all
Pages 12037-12046 | Received 15 Sep 2014, Accepted 26 Apr 2015, Published online: 27 May 2015

References

  • M.A. Rahman, H. Hasegawa, Aquatic arsenic: Phytoremediation using floating macrophytes, Chemosphere 83 (2011) 633–646.10.1016/j.chemosphere.2011.02.045
  • U.N. Rai, S. Sinha, R.D. Tripathi, P. Chandra, Wastewater treatability potential of some aquatic macrophytes: Removal of heavy metals, Ecol. Eng. 5 (1995) 5–12.10.1016/0925-8574(95)00011-7
  • S. Dhote, S. Dixit, Water quality improvement through macrophytes—A review, Environ. Monit. Assess. 152 (2009) 149–153.10.1007/s10661-008-0303-9
  • R.D. Sooknah, A.C. Wilkie, Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater, Ecol. Eng. 22 (2004) 27–42.10.1016/j.ecoleng.2004.01.004
  • J. Vymazal, Emergent plants used in free water surface constructed wetlands: A review, Ecol. Eng., B 61 (2013) 582–592.10.1016/j.ecoleng.2013.06.023
  • N.D.O. O’Luanaigh, R. Goodhue, L.W. Gill, Nutrient removal from on-site domestic wastewater in horizontal subsurface flow reed beds in Ireland, Ecol. Eng. 36 (2010) 1266–1276.10.1016/j.ecoleng.2010.06.002
  • K.E. Havens, B. Sharfstein, M.A. Brady, T.L. East, M.C. Harwell, R.P. Maki, A.J. Rodusky, Recovery of submerged plants from high water stress in a large subtropical lake in Florida, USA, Aquat. Bot. 78 (2004) 67–82.10.1016/j.aquabot.2003.09.005
  • K. Taguchi, K. Nakata, Evaluation of biological water purification functions of inland lakes using an aquatic ecosystem model, Ecol. Model 220 (2009) 2255–2271.10.1016/j.ecolmodel.2009.05.007
  • R.H. Kadlec, Free surface wetlands for phosphorus removal: The position of the Everglades Nutrient Removal Project, Ecol. Eng. 27 (2006) 361–379.10.1016/j.ecoleng.2006.05.019
  • J. Ma, H. Zhou, Z. Dong, Research on nitrogen and phosphorus removal by macrophytes(in Chinese), J. China Inst. Water 02 (2005) 130–134.
  • S. Lau, S.N. Lane, Nutrient and grazing factors in relation to phytoplankton level in a eutrophic shallow lake: the effect of low macrophyte abundance, Water Res. 36 (2002) 3593–3601.10.1016/S0043-1354(02)00059-3
  • M. Scheffer, The effect of aquatic vegetation on turbidity; How important are the filter feeders? Hydrobiologia 408–409 (1999) 307–316.10.1023/A:1017011320148
  • T. van der Heide, R.M.M. Roijackers, E.H. van Nes, E.T.H.M. Peeters, A simple equation for describing the temperature dependent growth of free-floating macrophytes, Aquat. Bot. 84 (2006) 171–175.10.1016/j.aquabot.2005.09.004
  • H.R. Hadad, M. Alejandra Maine, Phosphorous amount in floating and rooted macrophytes growing in wetlands from the Middle Paraná River floodplain (Argentina), Ecol. Eng. 31 (2007) 251–258.10.1016/j.ecoleng.2007.08.001
  • B. Zhu, C.M. Mayer, L.G. Rudstam, E.L. Mills, M.E. Ritchie, A comparison of irradiance and phosphorus effects on the growth of three submerged macrophytes, Aquat. Bot. 88 (2008) 358–362.10.1016/j.aquabot.2008.01.003
  • S. Wang, L.X. Jiao, S. Yang, X. Jin, W. Yi, Effects of organic matter and submerged macrophytes on variations of alkaline phosphatase activity and phosphorus fractions in lake sediment, J. Environ. Manage. 113 (2012) 355–360.10.1016/j.jenvman.2012.09.007
  • C. Wang, S.H. Zhang, W. Li, P. Fang Wang, L. Li, Nitric oxide supplementation alleviates ammonium toxicity in the submerged macrophyte Hydrilla verticillata (L.f.) Royle, Ecotoxicol. Environ. Saf. 74 (2011) 67–73.10.1016/j.ecoenv.2010.07.005
  • J. Gao, Z. Xiong, J. Zhang, W. Zhang, F. Obono Mba, Phosphorus removal from water of eutrophic Lake Donghu by five submerged macrophytes, Desalination 242 (2009) 193–204.10.1016/j.desal.2008.04.006
  • A. Thorén, C. Legrand, K.S. Tonderski, Temporal export of nitrogen from a constructed wetland: influence of hydrology and senescing submerged plants, Ecol. Eng. 23 (2004) 233–249.10.1016/j.ecoleng.2004.09.007
  • T. Gumbricht, Nutrient removal processes in freshwater submersed macrophyte systems, Ecol. Eng. 2 (1993) 1–30.10.1016/0925-8574(93)90024-A
  • T. Asaeda, V.K. Trung, J. Manatunge, Modeling the effects of macrophyte growth and decomposition on the nutrient budget in Shallow Lakes, Aquat. Bot. 68 (2000) 217–237.10.1016/S0304-3770(00)00123-6
  • J.M. Juston, T.A. DeBusk, K.A. Grace, S.D. Jackson, A model of phosphorus cycling to explore the role of biomass turnover in submerged aquatic vegetation wetlands for Everglades restoration, Ecol. Model. 251 (2013) 135–149.10.1016/j.ecolmodel.2012.12.001
  • M. Borin, M. Salvato, Effects of five macrophytes on nitrogen remediation and mass balance in wetland mesocosms, Ecol. Eng. 46 (2012) 34–42.10.1016/j.ecoleng.2012.04.034
  • J.G. Ferreira, J.H. Andersen, A. Borja, S.B. Bricker, J. Camp, M. Cardoso da Silva, E. Garcés, A. Heiskanen, C. Humborg, L. Ignatiades, Overview of eutrophication indicators to assess environmental status within the European Marine Strategy Framework Directive, Estuarine Coastal Shelf Sci. 93 (2011) 117–131.10.1016/j.ecss.2011.03.014
  • D. Xie, D. Yu, W. You, L. Wang, Algae mediate submerged macrophyte response to nutrient and dissolved inorganic carbon loading: A mesocosm study on different species, Chemosphere 93 (2013) 1301–1308.10.1016/j.chemosphere.2013.07.008
  • A. Kleeberg, Impact of aquatic macrophyte decomposition on sedimentary nutrient and metal mobilization in the initial stages of ecosystem development, Aquat. Bot. 105 (2013) 41–49.10.1016/j.aquabot.2012.12.003
  • X. Li, B. Cui, Q. Yang, Y. Lan, T. Wang, Z. Han, Effects of plant species on macrophyte decomposition under three nutrient conditions in a eutrophic shallow lake, North China, Ecol. Model252 (2013) 121–128.10.1016/j.ecolmodel.2012.08.006
  • H. Hongjuan, Z. Shuijing, H. Weiping, Modelling nitrogen and phosphorus transfer in Potamogeton malaianus miq.decompostion, Environ. Sci. 06 (2010) 1483–1488 ( in Chinese).
  • M. Schulz, K. Rinke, J. Köhler, A combined approach of photogrammetrical methods and field studies to determine nutrient retention by submersed macrophytes in running waters, Aquat. Bot. 76 (2003) 17–29.10.1016/S0304-3770(03)00015-9
  • C. Wigand, J.C. Stevenson, J.C. Cornwell, Effects of different submersed macrophytes on sediment biogeochemistry, Aquat. Bot. 56 (1997) 233–244.10.1016/S0304-3770(96)01108-4
  • J. Vymazal, The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic: 10 years experience, Ecol. Eng. 18 (2002) 633–646.10.1016/S0925-8574(02)00025-3
  • A. Sani, M. Scholz, L. Bouillon, Seasonal assessment of experimental vertical-flow constructed wetlands treating domestic wastewater, Bioresour. Technol147 (2013) 585–596.10.1016/j.biortech.2013.08.076
  • S.I. Abou-Elela, G. Golinielli, E.M. Abou-Taleb, M.S. Hellal, Municipal wastewater treatment in horizontal and vertical flows constructed wetlands, Ecol. Eng. 61 (2013) 460–468.10.1016/j.ecoleng.2013.10.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.