161
Views
19
CrossRef citations to date
0
Altmetric
Articles

Simultaneous electricity production and Direct Red 80 degradation using a dual chamber microbial fuel cell

, , , , , , & show all
Pages 9051-9059 | Received 30 Nov 2014, Accepted 01 Mar 2015, Published online: 02 Jun 2015

References

  • J.H. Jo, D.S. Lee, D. Park, J.M. Park, Statistical optimization of key process variables for enhanced hydrogen production by newly isolated Clostridium tyrobutyricum JM1, Int. J. Hydrocarbon. Eng. 33 (2008) 5176–5183.10.1016/j.ijhydene.2008.05.012
  • L.T. Angenent, K. Karim, M.H. Al-Dahhan, B.A. Wrenn, R. Domíguez-Espinosa, Production of bioenergy and biochemicals from industrial and agricultural wastewater, Trends Biotechnol. 22 (2004) 477–485.10.1016/j.tibtech.2004.07.001
  • V.B. Oliveira, M. Simões, L.F. Melo, A.M.F.R. Pinto, Overview on the developments of microbial fuel cells, Biochem. Eng. J. 73 (2013) 53–64.10.1016/j.bej.2013.01.012
  • W. Verstraete, K. Rabaey, Microbial fuel cells: Methodology and technology, Environ. Sci. Technol. 40 (2006) 5181–5192.
  • Z. Du, H. Li, T. Gu, A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy, Biotechnol. Adv. 25 (2007) 464–482.10.1016/j.biotechadv.2007.05.004
  • J. Niessen, U. Schroder, F. Scholz, Exploiting complex carbohydrates for microbial electricity generation–a bacterial fuel cell operating on starch, Electrochem. Commun. 6 (2004) 955–958.10.1016/j.elecom.2004.07.010
  • B.H. Kim, I.S. Chang, G.M. Gadd, Challenges in microbial fuel cell development and operation, Appl. Microbiol. Biotechnol. 76 (2007) 485–494.10.1007/s00253-007-1027-4
  • P. Cristiani, M.L. Carvalho, E. Guerrini, M. Daghio, C. Santoro, B. Li, Cathodic and anodic biofilms in single chamber microbial fuel cells, Bioelectrochemistry 92 (2013) 6–13.10.1016/j.bioelechem.2013.01.005
  • J.H. Ryu, H.L. Lee, Y.P. Lee, T.S. Kim, M.K. Kim, D.T.N. Anh, H.T. Tran, D.H. Ahn, Simultaneous carbon and nitrogen removal from piggery wastewater using loop configuration microbial fuel cell, Process Biochem. 48 (2013) 1080–1085.10.1016/j.procbio.2013.05.016
  • Y. Choi, E. Jung, S. Kim, S. Jung, Membrane fluidity sensoring microbial fuel cell, Bioelectrochemistry 59 (2003) 121–127.10.1016/S1567-5394(03)00018-5
  • A. Shukla, P. Suresh, B. Sheela, A. Rajendran, Biological fuel cells and their applications, Curr. Sci. 87 (2004) 455–468.
  • U. Schröder, Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency, Phys. Chem. Chem. Phys. 9 (2007) 2619–2629.10.1039/b703627m
  • A. Stolz, Basic and applied aspects in the microbial degradation of azo dyes, Appl. Microbiol. Biotechnol. 56 (2001) 69–80.10.1007/s002530100686
  • A. Pandey, P. Singh, L. Iyengar, Bacterial decolorization and degradation of azo dyes, Int. Biodeterior. Biodegrad. 59 (2007) 73–84.10.1016/j.ibiod.2006.08.006
  • K. Rasool, S.H. Woo, D.S. Lee, Simultaneous removal of COD and Direct Red 80 in a mixed anaerobic sulfate-reducing bacteria culture, Chem. Eng. J. 223 (2013) 611–616.10.1016/j.cej.2013.03.031
  • K. Solanki, S. Subramanian, S. Basu, Microbial fuel cells for azo dye treatment with electricity generation—A review, Bioresour. Technol. 131 (2013) 564–571.10.1016/j.biortech.2012.12.063
  • P. Kaushik, A. Malik, Fungal dye decolourization: Recent advances and future potential, Environ. Int. 35 (2009) 127–141.10.1016/j.envint.2008.05.010
  • Z. Li, X. Zhang, J. Lin, S. Han, L. Lei, Azo dye treatment with simultaneous electricity production in an anaerobic-aerobic sequential reactor and microbial fuel cell coupled system, Bioresour. Technol. 101 (2010) 4440–4445.10.1016/j.biortech.2010.01.114
  • A.B. dos Santos, F.J. Cervantes, J.B. van Lier, Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology, Bioresour. Technol. 98 (2007) 2369–2385.10.1016/j.biortech.2006.11.013
  • B.-Y. Chen, M.-M. Zhang, C.-T. Chang, Y. Ding, K.-L. Lin, C.-S. Chiou, C.C. Hsueh, H. Xu, Assessment upon azo dye decolorization and bioelectricity generation by Proteus hauseri, Bioresour. Technol. 101 (2010) 4737–4741.10.1016/j.biortech.2010.01.133
  • L. Liu, F. Li, C. Feng, X. Li, Microbial fuel cell with an azo-dye-feeding cathode, Appl. Microbiol. Biotechnol. 85 (2009) 175–183.10.1007/s00253-009-2147-9
  • J. Sun, Y. Li, Y. Hu, B. Hou, Q. Xu, Y. Zhang, S. Li, Enlargement of anode for enhanced simultaneous azo dye decolorization and power output in air-cathode microbial fuel cell, Biotechnol. Lett. 34 (2012) 2023–2029.10.1007/s10529-012-1002-8
  • M. Solís, A. Solís, H.I. Pérez, N. Manjarrez, M. Flores, Microbial decolouration of azo dyes—A review, Process Biochem. 47 (2012) 1723–1748.10.1016/j.procbio.2012.08.014
  • M. Dua, A. Singh, N. Sethunathan, A.K. Johri, Biotechnology and bioremediation: Successes and limitations, Appl. Microbiol. Biotechnol. 59 (2002) 143–152.
  • Y. Cao, Y. Hu, J. Sun, B. Hou, Explore various co-substrates for simultaneous electricity generation and Congo red degradation in air-cathode single-chamber microbial fuel cell, Bioelectrochemistry 79 (2010) 71–76.10.1016/j.bioelechem.2009.12.001
  • J. Sun, Y.-Y. Hu, Z. Bi, Y.-Q. Cao, Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell, Bioresour. Technol. 100 (2009) 3185–3192.10.1016/j.biortech.2009.02.002
  • R.G. Saratale, G.D. Saratale, J.S. Chang, S.P. Govindwar, Bacterial decolorization and degradation of azo dyes—A review, J. Taiwan Inst. Chem. Eng. 42 (2011) 138–157.10.1016/j.jtice.2010.06.006
  • J. Ok, Y.D. Seo, E.M. Jo, D.S. Lee, S.H. Woo, D. Park, A comprehensive study on electricity production from beer brewery wastewater by microbial fuel cells, J. Nanoelectron. Optoelectron. 6 (2011) 230–233.10.1166/jno.2011.1158
  • J. Ok, D. Park, J.W. Jung, G. Ghodake, D.S. Lee, Feasibility study on electricity production from a sewage sludge extract using microbial fuel cell, J. Nanoelectron. Optoelectron. 5 (2010) 227–231.10.1166/jno.2010.1099
  • APHA, Standard Methods for the Examination of Water and Wastewater, twentieth ed., APHA, AWWA, WPCF, American Public Health Association, Washington, DC, 2005.
  • B.D. Tony, D. Goyal, S. Khanna, Decolorization of textile azo dyes by aerobic bacterial consortium, Int. Biodeterior. Biodegrad. 63 (2009) 462–469.10.1016/j.ibiod.2009.01.003
  • Q. Yang, C. Li, H. Li, Y. Li, N. Yu, Degradation of synthetic reactive azo dyes and treatment of textile wastewater by a fungi consortium reactor, Biochem. Eng. J. 43 (2009) 225–230.10.1016/j.bej.2008.10.002
  • L.V. Gonzalez-Gutierrez, E.M. Escamilla-Silva, Reactive red azo dye degradation in a UASB bioreactor: Mechanism and kinetics, Eng. Life Sci. 9 (2009) 311–316.10.1002/elsc.v9:4
  • S.-J. You, J.-Y. Teng, Anaerobic decolorization bacteria for the treatment of azo dye in a sequential anaerobic and aerobic membrane bioreactor, J. Taiwan Inst. Chem. Eng. 40 (2009) 500–504.10.1016/j.jtice.2009.01.007
  • M. Işik, D.T. Sponza, Effect of oxygen on decolorization of azo dyes by Escherichia coli and Pseudomonas sp. and fate of aromatic amines, Process Biochem. 38 (2003) 1183–1192.
  • I. Stambolova, M. Shipochka, V. Blaskov, A. Loukanov, S. Vassilev, Sprayed nanostructured TiO2 films for efficient photocatalytic degradation of textile azo dye, J. Photochem. Photobiol., B 117 (2012) 19–26.10.1016/j.jphotobiol.2012.08.006
  • D.C. Kalyani, A.A. Telke, R.S. Dhanve, J.P. Jadhav, Ecofriendly biodegradation and detoxification of Reactive Red 2 textile dye by newly isolated Pseudomonas sp. SUK1, J. Hazard. Mater. 163 (2009) 735–742.10.1016/j.jhazmat.2008.07.020
  • Y. Sharma, B. Li, The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs), Bioresour. Technol. 101 (2010) 1844–1850.10.1016/j.biortech.2009.10.040
  • C.I. Pearce, R. Christie, C. Boothman, H. von Canstein, J.T. Guthrie, J.R. Lloyd, Reactive azo dye reduction byShewanella strain J18 143, Biotechnol. Bioeng. 95 (2006) 692–703.10.1002/(ISSN)1097-0290
  • K.-C. Chen, J.-Y. Wu, D.-J. Liou, S.-C.J. Hwang, Decolorization of the textile dyes by newly isolated bacterial strains, J. Biotechnol. 101 (2003) 57–68.10.1016/S0168-1656(02)00303-6
  • J.S. Chang, C. Chou, Y.C. Lin, P.J. Lin, J.Y. Ho, T.L. Hu, Kinetic characteristics of bacterial azo dye decolorization by Pseudomonas luteola, Water Res. 35 (2001) 2841–2850.10.1016/S0043-1354(00)00581-9
  • K.-J. Chae, M.-J. Choi, J.-W. Lee, K.-Y. Kim, I.S. Kim, Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells, Bioresour. Technol. 100 (2009) 3518–3525.10.1016/j.biortech.2009.02.065
  • H.S. Lee, P. Parameswaran, A. Kato-Marcus, C.I. Torres, B.E. Rittmann, Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates, Water Res. 42 (2008) 1501–1510.10.1016/j.watres.2007.10.036

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.