104
Views
13
CrossRef citations to date
0
Altmetric
Articles

Adsorption of chromium(VI) from saline wastewater using spent tea-supported magnetite nanoparticle

, , , &
Pages 12244-12256 | Received 04 Oct 2014, Accepted 04 May 2015, Published online: 17 Sep 2015

References

  • Â.L. Andrade, D.M. Souza, M.C. Pereira, J.D. Fabris, R.Z. Domingues, pH effect on the synthesis of magnetite nanoparticles by the chemical reduction-precipitation method, Quim. Nova 33 (2010) 524–527.10.1590/S0100-40422010000300006
  • M.M. Amin, A. Khodabakhshi, M. Mozafari, B. Bina, S. Kheiri, Removal of Cr(VI) from simulated electroplating wastewater by magnetite nanoparticles, Environ. Eng. Manage. J. 9 (2010) 921–927.
  • N. Ballav, H.J. Choi, S.B. Mishra, A. Maity, Synthesis, characterization of Fe3O4@glycine doped polypyrrole magnetic nanocomposites and their potential performance to remove toxic Cr(VI), J. Ind. Eng. Chem. 20 (2014) 4085–4093.10.1016/j.jiec.2014.01.007
  • A.A. Babaei, Z. Baboli, N. Jaafarzadeh, G. Goudarzi, M. Bahrami, M. Ahmadi, Synthesis, performance, and nonlinear modeling of modified nano-sized magnetite for removal of Cr(VI) from aqueous solutions, Desalin. Water Treat. 53 (2015) 768–777.10.1080/19443994.2013.846238
  • P. Yuan, M. Fan, D. Yang, H. He, D. Liu, A. Yuan, J. Zhu, T. Chen, Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions, J. Hazard. Mater. 166 (2009) 821–829.10.1016/j.jhazmat.2008.11.083
  • A. Zhu, L. Yuan, T. Liao, Suspension of Fe3O4 nanoparticles stabilized by chitosan and o-carboxymethylchitosan, Int. J. Pharm. 350 (2008) 361–368.10.1016/j.ijpharm.2007.09.004
  • M. Bahrami, S. Boroomandnasab, H.A. Kashkuli, A. Farrokhian Firoozi, A.A. Babaei, Removal Of Cd(II) from aqueous solution using modified Fe3O4 nanoparticles, Rep. Opin. 4 (2012) 31–40.
  • A.A. Babaei, M. Bahrami, A. Farrokhian Firouzi, A. Ramazanpour Esfahani, L. Alidokht, Adsorption of cadmium onto modified nanosized magnetite: Kinetic modeling, isotherm studies, and process optimization, Desalin. Water Treat. (2014) 1–13, doi:10.1080/19443994.2014.972986.
  • A. Novakova, V.Y. Lanchinskaya, A. Volkov, T. Gendler, T.Y. Kiseleva, M. Moskvina, S. Zezin, Magnetic properties of polymer nanocomposites containing iron oxide nanoparticles, J. Magn. Magn. Mater. 258–259 (2003) 354–357.10.1016/S0304-8853(02)01062-4
  • A. Ramazanpour Esfahani, A. Farrokhian Firouzi, G. Sayyad, A. Kiasat, Isotherm study of cadmium adsorption onto stabilized-zerovalent iron nanoparticles, Int. J. Agron. Plant Prod. 4 (2013) 3444–3454.
  • A. Esfahani, A. Firouzi, G. Sayyad, A. Kiasat, L. Alidokht, A.R. Khataee, Pb(II) removal from aqueous solution by polyacrylic acid stabilized zero-valent iron nanoparticles: Process optimization using response surface methodology, Res. Chem. Intermed. 40 (2014) 431–445.10.1007/s11164-012-0975-1
  • P. Yuan, M. Fan, D. Yang, H. He, D. Liu, A. Yuan, J. Zhu, T. Chen, Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions, J. Hazard. Mater. 166 (2009) 821–829.10.1016/j.jhazmat.2008.11.083
  • P. Yuan, D. Liu, M. Fan, D. Yang, R. Zhu, F. Ge, J. Zhu, H. He, Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles, J. Hazard. Mater. 173 (2010) 614–621.10.1016/j.jhazmat.2009.08.129
  • S. Si, A. Kotal, T.K. Mandal, S. Giri, H. Nakamura, T. Kohara, Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes, Chem. Mater. 16 (2004) 3489–3496.10.1021/cm049205n
  • I.J. Bruce, J. Taylor, M. Todd, M.J. Davies, E. Borioni, C. Sangregorio, T. Sen, Synthesis, characterisation and application of silica-magnetite nanocomposites, J. Magn. Magn. Mater. 284 (2004) 145–160.10.1016/j.jmmm.2004.06.032
  • A. Esfahani, S. Hojati, A. Azimi, L. Alidokht, A. Khataee, M. Farzadian, Reductive removal of hexavalent chromium from aqueous solution using sepiolite-stabilized zero-valent iron nanoparticles: Process optimization and kinetic studies, Korean J. Chem. Eng. 31 (2014) 630–638.10.1007/s11814-013-0285-3
  • M. Arruebo, R. Fernández-Pacheco, S. Irusta, J. Arbiol, M.R. Ibarra, J. Santamaría, Sustained release of doxorubicin from zeolite-magnetite nanocomposites prepared by mechanical activation, Nanotechnology 17 (2006) 4057–4064.10.1088/0957-4484/17/16/011
  • M. Giahi, R. Rakhshaee, M.A. Bagherinia, Removal of methylene blue by tea wastages from the synthesis waste waters, Chin. Chem. Lett. 22 (2011) 225–228.10.1016/j.cclet.2010.07.030
  • T. Madrakian, A. Afkhami, M. Ahmadi, Adsorption and kinetic studies of seven different organic dyes onto magnetite nanoparticles loaded tea waste and removal of them from wastewater samples, Spectrochim. Acta, Part A 99 (2012) 102–109.10.1016/j.saa.2012.09.025
  • E. Malkoc, Y. Nuhoglu, Removal of Ni(II) ions from aqueous solutions using waste of tea factory: Adsorption on a fixed-bed column, J. Hazard. Mater. 135 (2006) 328–336.10.1016/j.jhazmat.2005.11.070
  • B.M.W.P.K. Amarasinghe, R.A. Williams, Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater, Chem. Eng. J. 132 (2007) 299–309.10.1016/j.cej.2007.01.016
  • E. Malkoc, Y. Nuhoglu, Potential of tea factory waste for chromium(VI) removal from aqueous solutions: Thermodynamic and kinetic studies, Sep. Purif. Technol. 54 (2007) 291–298.10.1016/j.seppur.2006.09.017
  • M.K. Mondal, Removal of Pb(II) ions from aqueous solution using activated tea waste: Adsorption on a fixed-bed column, J. Environ. Manage. 90 (2009) 3266–3271.10.1016/j.jenvman.2009.05.025
  • P. Panneerselvam, N. Morad, K.A. Tan, Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel(II) from aqueous solution, J. Hazard. Mater. 186 (2011) 160–168.10.1016/j.jhazmat.2010.10.102
  • P. Yuan, D. Liu, M. Fan, D. Yang, R. Zhu, F. Ge, J. Zhu, H. He, Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles, J. Hazard. Mater. 173 (2010) 614–621.10.1016/j.jhazmat.2009.08.129
  • M. Ozmen, K. Can, G. Arslan, A. Tor, Y. Cengeloglu, M. Ersoz, Adsorption of Cu(II) from aqueous solution by using modified Fe3O4 magnetic nanoparticles, Desalination 254 (2010) 162–169.10.1016/j.desal.2009.11.043
  • G. Durai, M. Rajasimman, Biological treatment of tannery wastewater—A review, J. Environ. Sci. Technol. 4 (2011) 1–17.
  • K. Nagashanmugam, K. Srinivasan, Removal of chromium(VI) from aqueous solution by chemically modified gingelly oil cake carbon, Indian J. Chem. Technol. 18 (2011) 207–219.
  • M. Jain, V.K. Garg, K. Kadirvelu, Adsorption of hexavalent chromium from aqueous medium onto carbonaceous adsorbents prepared from waste biomass, J. Environ. Manage. 91 (2010) 949–957.10.1016/j.jenvman.2009.12.002
  • H. Li, S. Bi, L. Liu, W. Dong, X. Wang, Separation and accumulation of Cu(II), Zn(II) and Cr(VI) from aqueous solution by magnetic chitosan modified with diethylenetriamine, Desalination 278 (2011) 397–404.10.1016/j.desal.2011.05.056
  • American Society for Testing and Material (ASTM), Method D4749, Philadelphia, PA, 1994.
  • A. Ofomaja, E. Naidoo, Biosorption of lead(II) onto pine cone powder: Studies on biosorption performance and process design to minimize biosorbent mass, Carbohydr. Polym. 82 (2010) 1031–1042.10.1016/j.carbpol.2010.05.024
  • Y. Sharma, V. Srivastava, C. Weng, S. Upadhyay, Removal of Cr(VI) from wastewater by adsorption on iron nanoparticles, Can. J. Chem. Eng. 87 (2009) 921–929.10.1002/cjce.v87:6
  • Annual book of ASTM standards test methods for chromium in water ASTM, American Society for Testing and Material (ASTM), Philadelphia, PA, 2002.
  • S. Zakhama, H. Dhaouadi, F. M’Henni, Nonlinear modelisation of heavy metal removal from aqueous solution using Ulva lactuca algae, Bioresour. Technol. 102 (2011) 786–796.10.1016/j.biortech.2010.08.107
  • S. Rangabhashiyam, N. Anu, M.S. Giri Nandagopal, N. Selvaraju, Relevance of isotherm models in biosorption of pollutants by agricultural byproducts, J. Environ. Chem. Eng. 2 (2014) 398–414.10.1016/j.jece.2014.01.014
  • S. Lagergren, About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens Handlingar, 24(4) (1898) 1–39.
  • Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem. 34 (1999) 451–465.10.1016/S0032-9592(98)00112-5
  • S. Senthilkumaar, P. Varadarajan, K. Porkodi, C. Subbhuraam, Adsorption of methylene blue onto jute fiber carbon: Kinetics and equilibrium studies, J. Colloid Interface Sci. 284 (2005) 78–82.10.1016/j.jcis.2004.09.027
  • M. Kapoor, P. Srivastava, I. Kapoor, G. Singh, R. Fröhlich, X-ray crystallography and thermolysis of halide salts of 2, 4, 6-trimethylaniline, Part: 90, Energy Environ. Focus 2 (2013) 46–50.10.1166/eef.2013.1024
  • M.A. Hossain, H.H. Ngo, W.S. Guo, T. Setiadi, Adsorption and desorption of copper(II) ions onto garden grass, Bioresour. Technol. 121 (2012) 386–395.10.1016/j.biortech.2012.06.119
  • K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J. 156 (2010) 2–10.10.1016/j.cej.2009.09.013
  • D.L. Pavia, G.M. Lampman, G.S. Kriz, J.R. Vyvyan, Introduction to Spectroscopy, fourth ed., Cengage Learning, Boston, MA, 2008.
  • V. Gopalakannan, N. Viswanathan, Synthesis of magnetic alginate hybrid beads for efficient chromium (VI) removal, Int. J. Biol. Macromol. 72 (2015) 862–867.10.1016/j.ijbiomac.2014.09.024
  • P. Yuan, M. Fan, D. Yang, H. He, D. Liu, A. Yuan, J. Zhu, T. Chen, Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions, J. Hazard. Mater. 166 (2009) 821–829.10.1016/j.jhazmat.2008.11.083
  • J. Yang, M. Yu, W. Chen, Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: Kinetics, equilibrium and thermodynamics, J. Ind. Eng. Chem. 21 (2015) 414–422.10.1016/j.jiec.2014.02.054
  • S.R. Chowdhury, E.K. Yanful, Arsenic and chromium removal by mixed magnetite–maghemite nanoparticles and the effect of phosphate on removal, J. Environ. Manage. 91 (2010) 2238–2247.10.1016/j.jenvman.2010.06.003
  • I. Khazaei, M. Aliabadi, H.T. Mosavian, Use of agricultural waste for removal of Cr(VI) from aqueous solution, Iran. J. Chem. Eng. 8 (2011) 11–23.
  • Y. Jung, J. Choi, W. Lee, Spectroscopic investigation of magnetite surface for the reduction of hexavalent chromium, Chemosphere 68 (2007) 1968–1975.10.1016/j.chemosphere.2007.02.028
  • X.S. Wang, Y.J. Tang, L.F. Chen, F.Y. Li, W.Y. Wan, Y.B. Tan, Removal of Cr(VI) by zero valent, iron encapsulated alginate beads, CLEAN–Soil, Air, Water 38 (2010) 263–267.10.1002/(ISSN)1863-0650
  • I. Larraza, M. López-Gónzalez, T. Corrales, G. Marcelo, Hybrid materials: Magnetite–Polyethylenimine–Montmorillonite, as magnetic adsorbents for Cr(VI) water treatment, J. Colloid Interface Sci. 385 (2012) 24–33.10.1016/j.jcis.2012.06.050
  • S. Nethaji, A. Sivasamy, A.B. Mandal, Preparation and characterization of corn cob activated carbon coated with nano-sized magnetite particles for the removal of Cr(VI), Bioresour. Technol. 134 (2013) 94–100.10.1016/j.biortech.2013.02.012
  • G. Dönmez, Z. Aksu, Removal of chromium(VI) from saline wastewaters by Dunaliella species, Process Biochem. 38 (2002) 751–762.10.1016/S0032-9592(02)00204-2
  • A. Nemr, Potential of pomegranate husk carbon for Cr(VI) removal from wastewater: Kinetic and isotherm studies, J. Hazard. Mater. 161 (2009) 132–141.10.1016/j.jhazmat.2008.03.093
  • Y.G. Abou El-Reash, M. Otto, I.M. Kenawy, A.M. Ouf, Adsorption of Cr(VI) and As(V) ions by modified magnetic chitosan chelating resin, Int. J. Biol. Macromol. 49 (2011) 513–522.10.1016/j.ijbiomac.2011.06.001
  • A.E. Nemr, Potential of pomegranate husk carbon for Cr(VI) removal from wastewater: Kinetic and isotherm studies, J. Hazard. Mater. 161 (2009) 132–141.10.1016/j.jhazmat.2008.03.093
  • K.Z. Elwakeel, Removal of Cr(VI) from alkaline aqueous solutions using chemically modified magnetic chitosan resins, Desalination 250 (2010) 105–112.10.1016/j.desal.2009.02.063

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.