40
Views
29
CrossRef citations to date
0
Altmetric
Articles

Adsorptive removal of phenol from aqueous solutions by copper (cu)-modified scoria powder: process modeling and kinetic evaluation

, , , , &
Pages 11820-11834 | Received 15 Jun 2014, Accepted 20 Apr 2015, Published online: 12 Jun 2015

References

  • K. Saravanakumar, A. Kumar, Removal of phenol from aqueous solution by adsorption using zeolite, Afri. J. Agric. Res. 8(23) (2013) 2965–2969.
  • S.M. Mousavi, I. Alemzadeh, M. Vossoughi, Use of modified bentonite for phenolic adsorption in treatment of olive oil mill wastewater, Iran. J. Sci. Tech. Trans. B Eng. 30 (2006) 613–619.
  • S. Al-Asheh, F. Banat, L. Abu-Aitah, Adsorption of phenol using different types of activated bentonites, Sep. Purif. Technol. 33 (2003) 1–10.10.1016/S1383-5866(02)00180-6
  • R.I. Yousef, B. El-Eswed, A.H. Al-Muhtaseb, Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: Kinetics, mechanism, and thermodynamics studies, Chem. Eng. J. 171(3) (2011) 1143–1149.10.1016/j.cej.2011.05.012
  • F.A. Banat, B. Al-Bashir, S. Al-Asheh, O. Hayajneh, Adsorption of phenol by bentonite, J. Environ. Pollut. 107(3) (2000) 391–398.10.1016/S0269-7491(99)00173-6
  • Institute of Standards and Industrial Research of Iran, Quality Standards of Drinking Water, Tehran, ISIRI, 1997, p. 1053 ( in Persian).
  • B. Ozkaya, Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models, J. Hazard. Mater. 129(1–3) (2006) 158–163.10.1016/j.jhazmat.2005.08.025
  • B. Koubaissy, G. Joly, P. Magnoux, Adsorption and competitive adsorption on zeolites of nitrophenol compounds present in wastewater, Indian Eng. Chem. Res. 47(23) (2008) 9558–9565.10.1021/ie8001777
  • M. Carbajo, F.J. Beltran, F. Medina, O. Gimeno, F.J. Rivas, Catalytic ozonation of phenolic compounds: The case of gallic acid, Appl. Catal., B 67(3–4) (2006) 177–186.10.1016/j.apcatb.2006.04.019
  • A. Quintanilla, J.A. Casas, A.F. Mohedano, J.J. Rodriguez, Reaction pathway of the catalytic wet air oxidation of phenol with a Fe/activated carbon catalyst, Appl. Catal., B 67(3–4) (2006) 206–216.10.1016/j.apcatb.2006.05.003
  • S. Esplugas, J. Giménez, S. Contreras, E. Pascual, M. Rodrı́guez, Comparison of different advanced oxidation processes for phenol degradation, Water Res. 36(4) (2002) 1034–1042.10.1016/S0043-1354(01)00301-3
  • J.A. Zazo, J.A. Casas, A.F. Mohedano, J.J. Rodríguez, Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst, Appl. Catal., B 65(3–4) (2006) 261–268.10.1016/j.apcatb.2006.02.008
  • A.P. Annachhatre, S.H. Gheewala, Biodegradation of chlorinated phenolic compounds, Biotechnol. Adv. 14(1) (1996) 35–56.10.1016/0734-9750(96)00002-X
  • Z. Guo, R. Ma, G. Li, Degradation of phenol by nanomaterial TiO2 in wastewater, Chem. Eng. J. 119(1) (2006) 55–59.10.1016/j.cej.2006.01.017
  • A. Tor, Y. Cengeloglu, M.E. Aydin, M. Ersoz, Removal of phenol from aqueous phase by using neutralized red mud, J. Colloid Interface Sci. 300(2) (2006) 498–503.10.1016/j.jcis.2006.04.054
  • M.R. Panuccio, A. Sorgonà, M. Rizzo, G. Cacco, Cadmium adsorption on vermiculite, zeolite and pumice: Batch experimental studies, J. Environ. Manage. 90(1) (2009) 364–374.10.1016/j.jenvman.2007.10.005
  • S.S. Kaplan Bekaroglu, N.O. Yigit, T. Karanfil, M. Kitis, The adsorptive removal of disinfection by-product precursors in a high-SUVA water using iron oxide-coated pumice and volcanic slag particles, J. Hazard. Mater. 183(1–3) (2010) 389–394.10.1016/j.jhazmat.2010.07.037
  • N. Moraci, P.S. Calabrò, Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers, J. Environ. Manage. 91(11) (2010) 2336–2341.10.1016/j.jenvman.2010.06.019
  • B. Ozturk, Y. Yildirim, Investigation of sorption capacity of pumice for SO2 capture, Process Saf. Environ. Prot. 86(1) (2008) 31–36.10.1016/j.psep.2007.10.010
  • M.R. Samarghandi, M. Zarrabi, M.N. Sepehr, A. Amrane, G.H. Safari, S. Bashiri, Application of acidic pumice as an adsorbent the removal of azo dye from aqueous solutions: Kinetic, equilibrium and thermodynamic studies, Iran. J. Environ. Health Sci. Eng. 99(1) (2012) 33–44.
  • M. Heidari, F. Moattar, S. Naseri, M.T. Samadi, N. Khorasani, Evaluation of aluminum-coated pumice as a potential arsenic (V) adsorbent from water resources, Int. J. Environ. Res. 5(2) (2011) 447–456.
  • D. Baş, İ.H. Boyacı, Modeling and optimization I: Usability of response surface methodology, J. Food Eng. 78(3) (2007) 836–845.10.1016/j.jfoodeng.2005.11.024
  • G.E.P. Box, N.R. Draper, Empirical Model-building and Response Surfaces, Wiley, New York, NY, 1987.
  • A.L. Ahmad, S. Ismail, S. Bhatia, Optimization of coagulation–flocculation process for palm oil mill effluent using response surface methodology, Environ. Sci. Technol. 39(8) (2005) 2828–2834.10.1021/es0498080
  • A. Azizi, M.R. Alavi Moghaddam, M. Arami, Application of wood waste for removal of reactive blue 19 from aqueous solutions: Optimization through response surface methodology, Environ. Eng. Manage. J. 11(4) (2012) 795–804.
  • F. Shahrezaei, Y. Mansouri, A.A. Zinatizadeh, Process modeling and kinetic evaluation of petroleum refinery wastewater treatment in a photocatalytic reactor using TiO2 nanoparticles, Powder Technol. 221 (2012) 203–212.10.1016/j.powtec.2012.01.003
  • M. Shirzad-Siboni, S.J. Jafari, M. Farrokhi, J.K. Yang, Removal of phenol from aqueous solutions by activated red mud: Equilibrium and kinetics studies, Environ. Eng. Res. 18(4) (2013) 247–252.10.4491/eer.2013.18.4.247
  • A.I. Khuri, J.A. Cornell, Response Surfaces: Design and Analyses, second ed., Marcel Dekker, New York, NY, 1996.
  • B. Ersoy, A. Sariisik, S. Dikmen, G. Sariisik, Characterization of acidic pumice and determination of its electrokinetic properties in water, Powder Techol. 197(1–2) (2010) 129–135.10.1016/j.powtec.2009.09.005
  • D.C. Montgomery, Design and Analysis of Experiments, third ed., Wiley, New York, NY, 1991.
  • R.L. Mason, R.F. Gunst, J.L.  Hess, Statistical Design and Analysis of Experiments, Eighth Applications to Engineering and Science, second ed., Wiley, New York, NY, 2003.
  • R. Grim, Clay Mineralogy, McGraw-Hill Book Company, New York, NY, 1968, p. 596.
  • M. Kitis, E. Karakaya, N.O. Yigit, G. Civelekoglu, A. Akcil, Heterogeneous catalytic degradation of cyanide using copper-impregnated pumice and hydrogen peroxide, J. Water Res. 39(8) (2005) 1652–1662.10.1016/j.watres.2005.01.027
  • N. Dizge, B. Keskinler, H. Barlas, Sorption of Ni(II) ions from aqueous solution by Lewatit cation-exchange resin, J. Hazard. Mater. 167(1–3) (2009) 915–926.10.1016/j.jhazmat.2009.01.073
  • A. Sarı, M. Tuzen, Kinetic and equilibrium studies of biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Amanita rubescens) biomass, J. Hazard. Mater. 164(2–3) (2009) 1004–1011.10.1016/j.jhazmat.2008.09.002
  • F.N. Arslanogˇlu, F. Kar, N. Arslan, Adsorption of dark coloured compounds from peach pulp by using powdered-activated carbon, J. Food Eng. 71(2) (2005) 156–163.10.1016/j.jfoodeng.2004.10.029
  • T.W. Weber, R.K. Chakravorti, Pore and solid diffusion models for fixed-bed adsorbers, Amer. Institute Chem. Eng. J. 20(2) (1974) 228–238.10.1002/aic.v20:2
  • S. Veli, B. Alyüz, Adsorption of copper and zinc from aqueous solutions by using natural clay, J. Hazard. Mater. 149(1) (2007) 226–233.10.1016/j.jhazmat.2007.04.109
  • A. Arslan, S. Veli, Zeolite 13X for adsorption of ammonium ions from aqueous solutions and hen slaughterhouse wastewaters, J. Taiwan Inst. Chem. Eng. 43(3) (2012) 393–398.10.1016/j.jtice.2011.11.003
  • A. Mittal, D. Kaur, A. Malviya, J. Mittal, V.K. Gupta, Adsorption studies on the removal of coloring agent phenol red from wastewater using waste materials as adsorbents, J. Colloid Interface Sci. 337 (2009) 345–354.10.1016/j.jcis.2009.05.016
  • T.K. Naiya, A.K. Bhattacharya, S.K. Das, Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina, J. Colloid Interface Sci. 333(1) (2009) 14–26.10.1016/j.jcis.2009.01.003
  • J. Febrianto, A.N. Kosasih, J. Sunarso, Y.-H. Ju, N. Indraswati. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies, J. Hazard. Mater 162(2–3) (2009) 616–645.10.1016/j.jhazmat.2008.06.042
  • F. Akbal, Adsorption of basic dyes from aqueous solution onto pumice powder, J. Colloid Interface Sci. 286(2) (2005) 455–458.10.1016/j.jcis.2005.01.036
  • K.M. Lee, D.F. Gilmore, Modeling and optimization of biopolymer (polyhydroxyalkanoates) production from ice cream residue by novel statistical experimental design, Appl. Biochem. Biotechnol. 133(2) (2006) 113–148.10.1385/ABAB:133:2
  • H. Kusic, N. Koprivanac, A.L. Bozic, Treatment of chlorophenols in water matrix by UV/ferrioxalate system: Part I. Key process parameter evaluation by response surface methodology, Desalin.Water Treat. 280(1–3) (2011) 208–216.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.