83
Views
7
CrossRef citations to date
0
Altmetric
Articles

Evaluation of performance of Planococcus sp. TRC1 an indigenous bacterial isolate monoculture as bioremediator for tannery effluent

, , , , &
Pages 13213-13224 | Received 08 Sep 2014, Accepted 23 May 2015, Published online: 24 Jun 2015

References

  • R.R. Mishra, B. Dhal, S.K. Dutta, T.K. Dangar, N.N. Das, H.N. Thatoi, Optimization and characterization of chromium(VI) reduction in saline condition by moderately halophilic Vigribacillus sp. isolated from mangrove soil of Bhitarkanika, India, J. Hazard. Mater. 227–228 (2012) 219–226.10.1016/j.jhazmat.2012.05.063
  • M.N. Kathiravan, R. Karthick, K. Muthukumar, Ex situ bioremediation of Cr(VI) contaminated soil by Bacillus sp.: Batch and continuous studies, Chem. Eng. J. 169 (2011) 107–115.10.1016/j.cej.2011.02.060
  • K. Kolomaznik, M. Adamek, I. Andel, M. Uhlirova, Leather waste-potential threat to human health, and a new technology of its treatment, J. Hazard. Mater. 160 (2008) 514–520.10.1016/j.jhazmat.2008.03.070
  • G. Durai, M. Rajasimman, Biological treatment of tannery wastewater—Review, J. Environ. Sci. Technol. 4 (1) (2011) 1–17.
  • S. De Flora, Threshold mechanisms and site specificity in chromium (VI) carcinogenesis, Carcinogenesis 21 (2000) 533–541.
  • M. Costa, Potential hazards of hexavalent chromate in our drinking water, Toxicol. Appl. Pharmacol. 188 (2003) 1–5.10.1016/S0041-008X(03)00011-5
  • P. Kristen, S. Nickens, R. Patierno, S. Ceryak, Chromium genotixicity A: Double edged sword, Chem. Biol. Interact. 188 (2010) 276–288.
  • M. Owlad, M. Aroua, W. Daud, S. Baroutian, Removal of hexavalent chromium-contaminated water and wastewater: A review, Water Air Soil Pollut. 200 (2009) 59–77.10.1007/s11270-008-9893-7
  • A. Rehman, A. Zahoor, B. Muneer, S. Hasnain, Chromium tolerance and reduction potential of a Bacillus sp.ev3 isolated from metal contaminated wastewater, Bull. Environ. Contam. Toxicol. 81 (2008) 25–29.10.1007/s00128-008-9442-5
  • T. Mandal, S. Maity, D. Dasgupta, S. Datta, Advanced oxidation process and biotreatment: Their roles in combined industrial wastewater treatment, Desalination 250 (2010) 87–94.10.1016/j.desal.2009.04.012
  • T. Mandal, D. Dasgupta, S. Datta, A biotechnological thrive on COD and chromium removal from leather industrial wastewater by the isolated microorganisms, Desalin. Water Treat. 13 (2010) 382–392.10.5004/dwt.2010.996
  • C. Desai, K. Jain, D. Madamwar, Evaluation of in vitro Cr(VI) reduction potential in cytosolic extracts of three indigenous Bacillus sp. isolated from Cr(VI) polluted industrial landfill, Bioresour. Technol. 99 (2008) 6059–6069.10.1016/j.biortech.2007.12.046
  • N. Singh, T. Verma, R. Gaur, Detoxification of hexavalent chromium by an indigenous facultative anaerobic Bacillus cereus strain isolated from tannery effluent, Afr. J. Biotechnol. 12 (2013) 1091–1103.
  • Q.H. Pei, S. Shahir, A.S.S. Santhana Raj, Z.A. Zakaria, W.A. Ahmad, Chromium(VI) resistance and removal by Acinetobacter haemolyticus, World J. Microbiol. Biotechnol. 25 (2009) 1085–1093.10.1007/s11274-009-9989-2
  • Z. He, F. Gao, T. Sha, Y. Hu, C. He, Isolation and characterization of a Cr(VI)-reduction Ochrobactrum sp. strain CSCr-3 from chromium landfill, J. Hazard. Mater. 163 (2009) 869–873.10.1016/j.jhazmat.2008.07.041
  • APHA, Standard Methods for the Examination of Water and Wastewater, eighteenth ed., Washington, DC, 1989.
  • P. Pattanapipitpaisal, N.L. Brown, L.E. Macaskie, Chromate reduction and 16S rRNA identification of bacteria isolated from a Cr(VI) contaminated site, Appl. Microbiol. Biotechnol. 57 (2001) 257–261.
  • M. Cheesborough, District Laboratory Practice in Tropical Countries, Part 2, Cambridge University Press, UK, 2000, pp. 34–243.
  • J.G. Holt, N.R. Krieg, P.H.A. Sneath, J.T. Staley, S.T. Williams, Group 5 facultatively anaerobic gram-negative rods, in: Bergey’s Manual of Determinative Bacteriology, nineth ed., Williams and Wilkins, Baltimore, 1994, pp. 252–274.
  • J.D. Thompson, T.J. Gibson, F. Plewniak, F. Jeanmougin, The Clustal_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucleic Acids Res. 25 (1997) 4876–4882.10.1093/nar/25.24.4876
  • APHA, Standard Methods for the Examination of Water and Wastewater, American Public Health Association/American Water Work Association/Water environment Federation, Washington, DC, 1998.
  • D. Park, Y.S. Yun, J.H. Hye Jo, J.M. Park, Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger, Water Res. 39 (2005) 533–540.10.1016/j.watres.2004.11.002
  • G. Friskesjo, The Allium test, an alternative in environmental studies; the relative toxicity of metal ions, Mutat. Res. 197 (1987) 243–280.
  • A.K. Sharma, A.S. Dphil, Chromosome Techniques, Fakenham Press Ltd, Norfolk, VA, 1980, pp. 95–100.
  • S. Chityala, D. Dhali, M. Behera, D. Dasguptamandal, Chromium(VI) Tolerant Bacterial Species from Tannery Industrial Effluent, Kolkata, India, GenBank Accession No. HE663167, 2012.
  • A. Margolles, M. Gueimonde, B. Sanchez, Genome sequence of the antarctic psychrophile bacterium Planococcus antarcticus DSM 14505, J. Bacteriol. 194 (2012) 16–16.
  • K. Mistry, C. Desai, K. Patel, Reduction of chromium(VI) by bacterial strain KK15 isolated from contaminated soil, J. Cell Tissue Res. 9(2) (2009) 1821–1826.
  • A. Zahoor, A. Rehman, Isolation of Cr(VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater, J. Environ. Sci. 21 (2009) 814–820.10.1016/S1001-0742(08)62346-3
  • R. Chowdhury, A.K. Sen, P. Karak, R. Chatterjee, A.K. Giri, K. Chaudhuri, Isolation and characterization of an arsenic-resistant bacterium from a bore-well in West Bengal, India, Ann. Microbiol. 59 (2003) 253–258.
  • C. Nithya, B. Gnanalakshmi, S.K. Pandian, Assessment and characterization of heavy metal resistance in Palk Bay sediment bacteria, Mar. Environ. Res. 71 (2011) 283–294.10.1016/j.marenvres.2011.02.003
  • S. Subramanian, S. Sam, G. Jayaraman, Hexavalent chromium reduction by metal resistant and halotolerant Planococcus maritimus VITP21, Afr. J. Microbiol. Res. 11 (2012) 7339–7349.
  • K.V. Lobanova, M. Kerbalaeva, Zh.Zh. Tashpulatov, T.G. Gulyameva, Carotene forming activity of certain halophilic bacteria from Barsakelmes saline soil, Chem. Nat. Compd. 44 (2008) 234–244.
  • D.F.C. Jacobucci, M.R. de Godoy Oriani, L.R. Durrant, Reducing COD level on oily effluent by utilizing biosurfactant-producing bacteria, Braz. Arch. Biol. Technol. 52(4) (2009) 1037–1042.10.1590/S1516-89132009000400029
  • R. Vennila, V. Kannan, Bioremediation of petroleum refinery effluent by Planococcus halophilus, Afr. J. Biotechnol. 10 (2011) 8829–8833.
  • V.K. Gupta, A.K. Shrivastava, N. Jain, Biosorption of chromium(VI) from aqueous solutions by green algae Spirogyra species, Water Res. 35 (2001) 4079–4085.10.1016/S0043-1354(01)00138-5
  • R. Francisco, A. Moreno, P.V. Morais, Different physiological responses to chromate and dichromate in the chromium resistant and reducing strain Ochrobactrum tritici 5bvl1, BioMetals 23 (2010) 713–725.10.1007/s10534-010-9338-9
  • X. Xie, J. Fu, H. Wang, J. Liu, Heavy metal resistance by two bacteria strains isolated from a copper mine tailing in China, Afr. J. Biotechnol. 9(26) (2010) 4056–4066.
  • S. Latha, G. Vinothini, D. Dhanasekaran, Chromium [Cr(VI)] biosorption property of the newly isolated actinobacterial probiont Streptomyces werraensis LD22, 3, Biotech (2014),  doi: 10.1007/s13205-014-0237-6.
  • B. Volesky, Biosorption and Biosorbents. Biosorption of Heavy Metals, CRC Press, Boca Raton, FL, 1990, pp. 3–6.
  • D. Borrok, F. Benzamin, Turner, B. Jeremy Fein, A universal surface complexation framework for modeling proton binding onto bacterial surfaces in geologic settings, Am. J. Sci. 305 (2005) 826–853.10.2475/ajs.305.6-8.826
  • M. Megharaj, S. Avudainayagam, R. Naidu, Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste, Curr. Microbiol. 47 (2003) 51–54.10.1007/s00284-002-3889-0
  • Z. Asku, T. Kutsal, S. Gun, N. Haciosmanoglu, M. Gholminejad, Investigation of biosorption of Cu (II), Ni (II) and Cr(VI) ions to activated sludge bacteria, Environ. Technol. 12 (1991) 915–921.
  • C. Quintelas, B. Fernandes, J. Castro, H. Figueiredo and T. Tavares, Biosorption of Cr(VI) by three different bacterial species supported on granular activated carbon-A comparative study, J. of Hazard. Mater. 153 (2008) 799–809.
  • P. Sethuraman, N. Balasubramanian, Removal of Cr(VI) from aqueous solution using Bacillus subtilis, Pseudomonas aeruginosa, Enterobacter cloacae, Int. J. Eng. Sci. And Technol. 2(6) (2010) 1811–1825.
  • T.F. Fernandes, N. Christofi, V. Stone, The environmental implications of nanomaterials, in: N. Monteiro-Riviere, C. Tran (Eds.), Nanotoxicology, CRC Press, Boca Raton, FL, 2007, pp. 405–418.10.3109/9781420045154
  • R. Chakraborty, A.K. Mukherjee, A. Mukherjee, Evaluation of genotoxicity of coal fly ash in Allium cepa root cells by combining comet assay with the Allium test, Environ. Monit. Assess. 153 (2009) 351–357.10.1007/s10661-008-0361-z
  • A.K. Shanker, C. Cervantes, H. Lozatavera, S. Avudainayagam, Chromium toxicity in plants, Environ. Int. 31 (2005) 739–753.10.1016/j.envint.2005.02.003
  • M.N.V. Prasad, M. Greger, T. Landberg, Acacia nilotica L. bark removes toxic elements from solution: Corroboration from toxicity bioassay using Salix viminalis L. in hydroponic system, Int. J. Phytoremed. 3 (2001) 289–300.10.1080/15226510108500060

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.