136
Views
15
CrossRef citations to date
0
Altmetric
Articles

Modeling and optimization by response surface methodology and neural network–genetic algorithm for decolorization of real textile dye effluent using Pleurotus ostreatus: a comparison study

, &
Pages 13005-13019 | Received 07 Jan 2015, Accepted 28 May 2015, Published online: 19 Jun 2015

References

  • A. Movafeghi, A.R. Khataee, S. Torbati, M. Zarei, S.Y. Salehi Lisar, Bi removal of C.I. basic red 46 as an azo dye from contaminated water by Lemna minor L: Modeling of key factor by neural network, Environ. Prog. 32 (2013) 1082–1089.
  • F. Deniz, Optimization of biosorption conditions for color removal by Taguchi DOE methodology, Environ. Prog. 32 (2013) 1129–1133.
  • S. Sandhya, K. Sarayu, K. Swaminathan, Determination of kinetic constants of hybrid textile wastewater treatment system, Bioresour. Technol. 99 (2008) 5793–5797.10.1016/j.biortech.2007.10.011
  • S. Torbati, A.R. Khataee, A. Movafeghi, Application of watercress (Nasturtium officinale R. Br.) for biotreatment of a textile dye: Investigation of some physiological responses and effects of operational parameters, Chem. Eng. Res. Des. 92 (2014) 1934–1941.10.1016/j.cherd.2014.04.022
  • J.P. Jadhav, S.S. Phugare, R.S. Dhanve, S.B. Jadhav, Rapid biodegradation and decolorization of direct orange 39 (orange TGLL) by an isolated bacterium Pseudomonas aeruginosa strain BCH, Biodegradation 21 (2010) 453–463.10.1007/s10532-009-9315-6
  • R.C. Senan, T.E. Abraham, Bioremediation of textile azo dyes by aerobic bacterial consortium aerobic degradation of selected azo dyes by bacterial consortium, Biodegradation 15 (2004) 275–280.10.1023/B:BIOD.0000043000.18427.0a
  • W.D. Constant, J.H. Pardue, R.D. Delaune, K. Blanchard, G.A. Breitenbeck, Enhancement of in situ microbial degradation of chlorinated organic waste at the petro processors superfund site, Environ. Prog. 14 (1995) 51–60.10.1002/(ISSN)1547-5921
  • M.S.M. Annuar, S. Adnan, S. Vikineswary, Y. Chisti, Kinetics and energetics of azo dye decolorization by Pycnoporus sanguineus, Water Air Soil Pollut. 202 (2009) 179–188.10.1007/s11270-008-9968-5
  • A.K. Verma, C. Raghukumar, P. Verma, Y.S. Shouche, C.G. Naik, Four marine-derived fungi for bioremediation of raw textile mill effluents, Biodegradation 21 (2010) 217–233.10.1007/s10532-009-9295-6
  • R.A. Haimann, Fungal technologies for the treatment of hazardous waste, Environ. Prog. 14 (1995) 201–203.10.1002/(ISSN)1547-5921
  • S.U. Jadhav, S.D. Kalme, S.P. Govindwar, Biodegradation of methyl red by Galactomyces geotrichum MTCC 1360, Int. Biodeterior. Biodegrad. 62 (2008) 135–142.10.1016/j.ibiod.2007.12.010
  • G. Dönmez, Bioaccumulation of the reactive textile dyes by Candida tropicalis growing in molasses medium, Enzyme Microb. Technol. 30 (2002) 363–366.10.1016/S0141-0229(01)00511-7
  • A.R. Khataee, M. Zarei, M. Pourhassan, Bioremediation of malachite green from contaminated water by three microalgae: Neural network modelling, Clean-Soil Air Water 38 (2010) 96–103.
  • A.R. Khataee, G. Dehghan, A. Ebadi, M. Zarei, M. Pourhassan, Biological treatment of a dye solution by Macroalgae Chara sp.: Effect of operational parameters, intermediates identification and artificial neural network modeling, Bioresour. Technol. 101 (2010) 2252–2258.10.1016/j.biortech.2009.11.079
  • A.R. Khataee, G. Dehghan, M. Zarei, E. Ebadi, M. Pourhassan, Neural network modeling of biotreatment of triphenylmethane dye solution by a green macroalgae, Chem. Eng Res. Des. 89 (2011) 172–178.10.1016/j.cherd.2010.05.009
  • A. Rehman, F.R. Shakoori, A.R. Shakoori, Resistance and uptake of heavy metals by Vorticella microstoma and its potential use in industrial wastewater treatment, Environ. Prog. 29 (2010) 481–486.
  • K. Papadopoulou, I.M. Kalagona, A. Philippoussis, F. Rigas, Optimization of fungal decolorization of azo and anthraquinone dyes via Box-Behnken design, Int. Biodeterior. Biodegrad. 77 (2013) 31–38.10.1016/j.ibiod.2012.10.008
  • G. Eger, G. Eden, E. Wissig, Pleurotus ostreatus? Breeding potential of a new cultivated mushroom, Theor. Appl. Genet. 47 (1976) 155–163.10.1007/BF00278373
  • F.M. Zhang, J.S. Knapp, K.N. Tapley, Development of bioreactor systems for decolorization of orange II using white rot fungus, Enzyme Microb. Technol. 24 (1999) 48–53.10.1016/S0141-0229(98)00090-8
  • D.H.Y. Yanto, S. Tachibana, K. Itoh, Biodecolorization of textile dyes by immobilized enzymes in a vertical bioreactor system, Proc. Environ. Sci. 20 (2014) 235–244.10.1016/j.proenv.2014.03.030
  • P. Pakravan, A. Akhbari, H. Moradi, A.H. Azandaryani, A.M. Mansouri, M. Safari, Process modelling and evaluation of petroleum refinery wastewater treatment through response surface methodology and artificial neural network in a photocatalytic reactor using polyethyleneimine (PEI)/titania (TiO2) multilayer film on quartz tube, Appl. Petrochem. Res. 5 (2015) 47–59.
  • G.E. Box, J.S. Hunter, Multi-factor experimental designs for exploring response surfaces, Ann. Math. Stat. 28 (1957) 195–241.
  • K. Karthikeyan, K. Nanthakumar, K. Shanthi, P. Lakshmanaperumalsamy, Response surface methodology for optimization of culture conditions for dye decolorization by a fungus, Aspergillus niger HM11 isolated from dye affected soil, Iran. J. Microbiol. 2 (2010) 213–222.
  • R.H. Myers, D.C. Montgomery, Response Surface Methodology: Process and Product Optimization using Designed Experiments, Wiley, New York, NY, 1995.
  • M. Rasouli, S. Seiiedlou, H.R. Ghasemzadeh, H. Nalbandi, Convective drying of garlic (Allium sativum L.): Part I: Drying kinetics, mathematical modelling and change in color, AJCS 5 (2011) 1707–1714.
  • L. Wang, C. Shao, H. Wang, H. Wu, Radial basis function neural networks-based modeling of the membrane separation process: Hydrogen recovery from refinery gases, J. Nat. Gas Chem. 15 (2006) 230–234.10.1016/S1003-9953(06)60031-5
  • B. Zhao, Y. Su, Artificial neural network-based modeling of pressure drop coefficient for cyclone separators, Chem. Eng. Res. Des. 88 (2010) 606–613.10.1016/j.cherd.2009.11.010
  • K.M. Desai, S.A. Survase, P.S. Saudagar, S.S. Lele, R.S. Singhal, R.S. Singhal, Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: Case study of fermentative production of scleroglucan, Biochem. Eng. J. 41 (2008) 266–273.10.1016/j.bej.2008.05.009
  • S. Haykin, Neural Networks. A Comprehensive Foundation, Prentice Hall International, New Jersey, NJ, 1998.
  • A.D. Eaton, M.A.H. Franson, Standard Methods for the Examination of Water and Wastewater, APHA, Washington, DC, 2005.
  • K. Thirugnanasambandham, V. Sivakumar, J.P. Maran, Efficiency of electrocoagulation method to treat chicken processing industry wastewater—Modeling and optimization, J. Taiwan Inst. Chem. Eng. 45 (2014) 2427–2435.10.1016/j.jtice.2014.04.011
  • G.F.S. Valente, R.C.S. Mendonça, J.A.M. Pereira, L.B. Felix, Artificial neural network prediction of chemical oxygen demand in dairy industry effluent treated by electrocoagulation, Sep. Purif. Technol. 132 (2014) 627–633.10.1016/j.seppur.2014.05.053
  • M. Shanmugaprakash, V. Sivakumar, Development of experimental design approach and ANN-based models for determination of Cr(VI) ions uptake rate from aqueous solution onto the solid biodiesel waste residue, Bioresour. Technol. 148 (2013) 550–559.10.1016/j.biortech.2013.08.149
  • H. Karimi, M. Ghaedi, Application of artificial neural network and genetic algorithm to modeling and optimization of removal of methylene blue using activated carbon, J. Ind. Eng. Chem. 20 (2014) 2471–2476.10.1016/j.jiec.2013.10.028
  • M. Zafar, S. Kumar, S. Kumar, A.K. Dhiman, Optimization of polyhydroxybutyrate (PHB) production by Azohydromonas lata MTCC 2311 by using genetic algorithm based on artificial neural network and response surface methodology, Biocatal. Agr. Biotechnol. 1 (2012) 70–79.
  • D.R. Hamsaveni, S.G. Prapulla, S. Divakar, Response surface methodological approach for the synthesis of isobutyl isobutyrate, Process Biochem. 36 (2001) 1103–1109.10.1016/S0032-9592(01)00142-X
  • K. Sinha, S. Chowdhury, P.D. Saha, S. Datta, Modeling of microwave-assisted extraction of natural dye from seeds of Bixa orellana (Annatto) using response surface methodology (RSM) and artificial neural network (ANN), Ind. Crop. Prod. 41 (2013) 165–171.10.1016/j.indcrop.2012.04.004
  • M.G. Moghaddam, M. Khajeh, Comparison of response surface methodology and artificial neural network in predicting the microwave-assisted extraction procedure to determine zinc in fish muscles, Food Nutr. Sci. 02 (2011) 803–808.10.4236/fns.2011.28110
  • B. Rahmanian, M. Pakizeh, S.A. Mansoori, R. Abedini, Application of experimental design approach and artificial neural network (ANN) for the determination of potential micellar-enhanced ultrafiltration process, J. Hazard. Mater. 187 (2011) 67–74.10.1016/j.jhazmat.2010.11.135
  • S. Sathian, M. Rajasimman, G. Radha, V. Shanmugapriya, C. Karthikeyan, Performance of SBR for the treatment of textile dye wastewater: Optimization and kinetic studies, Alexandria Eng. J. 53 (2014) 417–426.10.1016/j.aej.2014.03.003
  • R.M. García-Gimeno, C. Hervás-Martínez, R. Rodríguez-Pérez, G. Zurera-Cosano, Modelling the growth of Leuconostoc mesenteroides by artificial neural networks, Int. J. Food Microbiol. 105 (2005) 317–332.10.1016/j.ijfoodmicro.2005.04.013
  • S. Youssefi, Z. Emam-Djomeh, S.M. Mousavi, Comparison of artificial neural network (ANN) and response surface methodology (RSM) in the prediction of quality parameters of spray-dried pomegranate juice, Drying Technol. 27 (2009) 910–917.10.1080/07373930902988247
  • A. Çelekli, F. Geyik, Artificial neural networks (ANN) approach for modeling of removal of Lanaset Red G on Chara contraria, Bioresour. Technol. 102 (2011) 5634–5638.10.1016/j.biortech.2011.02.052
  • M. Rajendra, P.C. Jena, H. Raheman, Prediction of optimized pretreatment process parameters for biodiesel production using ANN and GA, Fuel 88 (2009) 868–875.10.1016/j.fuel.2008.12.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.