150
Views
11
CrossRef citations to date
0
Altmetric
Articles

An efficient Ag2SO4-deposited ZnO in photocatalytic removal of indigo carmine and phenol under outdoor light irradiation

, , &
Pages 14227-14240 | Received 11 Nov 2014, Accepted 09 Jun 2015, Published online: 16 Jul 2015

References

  • U.R. Lakshmi, V.C. Srivastava, I.D. Mall, D.H. Lataye, Rice husk ash as an effective adsorbent: Evaluation of adsorptive characteristics for Indigo Carmine dye, J. Environ. Manage. 90 (2009) 710–720.10.1016/j.jenvman.2008.01.002
  • A. Bentouami, M.S. Ouali, L.C. De-Menorval, Photocatalytic decolourization of indigo carmine on 1,10-phenanthrolinium intercalated bentonite under UV-B and solar irradiation, J. Photochem. Photobiol. A: Chem. 212 (2010) 101–106.10.1016/j.jphotochem.2010.04.002
  • A. Mittal, J. Mittal, L. Kurup, Batch and bulk removal of hazardous dye, indigo carmine from wastewater through adsorption, J. Hazard. Mater. 137 (2006) 591–602.10.1016/j.jhazmat.2006.02.047
  • M.S. Secula, I. Creţescu, S. Petrescu, An experimental study of indigo carmine removal from aqueous solution by electrocoagulation, Desalination 277 (2011) 227–235.10.1016/j.desal.2011.04.031
  • Y.F. Zhang, R. Selvaraj, M. Sillanpää, Y.H. Kim, C.W. Tai, The influence of operating parameters on heterogeneous photocatalytic mineralization of phenol over BiPO4, Chem. Eng. J. 245 (2014) 117–123.10.1016/j.cej.2014.02.028
  • B.C. Meikap, G.K. Rot, Removal of phenolic compound from industrial waste water by semi fluidized bed bio-reactor, J. IPHE India 3 (2007) 54–61.
  • C.P. Sajan, B. Basavalingu, S. Ananda, K. Byrappa, Comparative study on the photodegradation of Indigo Caramine dye using commercial TiO2 and natural rutile, J. Geol. Soc. India 77 (2011) 82–88.10.1007/s12594-011-0010-y
  • U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review, J. Hazard. Mater. 170 (2009) 520–529.10.1016/j.jhazmat.2009.05.039
  • B. Subash, B. Krishnakumar, M. Swaminathan, M. Shanthi, Enhanced photocatalytic performance of WO3 loaded Ag–ZnO for Acid Black 1 degradation by UV-A light, J. Mol. Catal. A: Chem. 366 (2013) 54–63.10.1016/j.molcata.2012.09.008
  • S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, V. Murugesan, Solar photocatalytic degradation of azo dye: Comparison of photocatalytic efficiency of ZnO and TiO2, Sol. Energy Mater. Sol. Cells 77 (2003) 65–82.10.1016/S0927-0248(02)00255-6
  • Y. Zhou, S.X. Lu, W.G. Xu, Photocatalytic activity of Nd-doped ZnO for the degradation of C.I. reactive blue 4 in aqueous suspension, Environ. Prog. Sustainable Energy 28 (2009) 226–233.
  • J.H. Sun, L.P. Qiao, S.P. Sun, G.L. Wang, Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation, J. Hazard. Mater. 155 (2008) 312–319.10.1016/j.jhazmat.2007.11.062
  • J.H. Sun, S.Y. Dong, J.L. Feng, X.J. Yin, X.C. Zhao, Enhanced sunlight photocatalytic performance of Sn-doped ZnO for Methylene Blue degradation, J. Mol. Catal. A: Chem. 335 (2011) 145–150.10.1016/j.molcata.2010.11.026
  • S. Ahmed, M.G. Rasul, R. Brown, M.A. Hashib, Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: A short review, J. Environ. Manage. 92 (2011) 311–330.10.1016/j.jenvman.2010.08.028
  • H. Liu, X.N. Dong, G.J. Li, X. Su, Z.F. Zhu, Synthesis of C, Ag co-modified TiO2 photocatalyst and its application in waste water purification, Appl. Surf. Sci. 271 (2013) 276–283.10.1016/j.apsusc.2013.01.181
  • B. Divband, M. Khatamian, G.R.K. Eslamian, M. Darbandi, Synthesis of Ag/ZnO nanostructures by different methods and investigation of their photocatalytic efficiency for 4-nitrophenol degradation, Appl. Surf. Sci. 284 (2013) 80–86.10.1016/j.apsusc.2013.07.015
  • A. Meng, S.B. Sun, Z.J. Li, J.K. Han, Synthesis, characterization, and dispersion behavior of ZnO/Ag nanocomposites, Adv. Powder Technol. 24 (2013) 224–228.10.1016/j.apt.2012.06.006
  • A. Senthilraja, B. Subash, B. Krishnakumar, D. Rajamanickam, M. Swaminathan, M. Shanthi, Synthesis, characterization and catalytic activity of co-doped Ag–Au–ZnO for MB dye degradation under UV-A light, Mater. Sci. Semicond. Process. 22 (2014) 83–91.10.1016/j.mssp.2014.02.011
  • H.Q. Bian, S.Y. Ma, Z.M. Zhang, J.M. Gao, H.B. Zhu, Microstructure and Raman scattering of Ag-doping ZnO films deposited on buffer layers, J. Cryst. Growth 394 (2014) 132–136.10.1016/j.jcrysgro.2014.02.036
  • N. Kiomarsipour, R.S. Shoja Razavi, Hydrothermal synthesis and optical property of scale and spindle-like ZnO, Ceram. Int. 39 (2013) 813–818.10.1016/j.ceramint.2012.07.002
  • J.C. Sin, S.M. Lam, I. Satoshi, K.T. Lee, A.R. Mohamed, Sunlight photocatalytic activity enhancement and mechanism of novel europium-doped ZnO hierarchical micro/nanospheres for degradation of phenol, Appl. Catal. B: Environ. 148–149 (2014) 258–268.10.1016/j.apcatb.2013.11.001
  • T.G. Venkatesha, Y.A. Arthoba Nayaka, R. Viswanatha, C.C. Vidyasagar, B.K. Chethana, Electrochemical synthesis and photocatalytic behavior of flower shaped ZnO microstructures, Powder Technol. 225 (2012) 232–238.10.1016/j.powtec.2012.04.021
  • T. Parvin, N. Keerthiraj, I.A. Ibrahim, S. Phanichphant, K. Byrappa, Photocatalytic degradation of municipal wastewater and brilliant blue dye using hydrothermally synthesized surface-modified silver-doped ZnO designer particles, Int. J. Photoenergy 2012 (2012) 670610.
  • V. Srivastava, D. Gusain, Y.C. Sharma, Synthesis, characterization and application of zinc oxide nanoparticles (n-ZnO), Ceram. Int. 39 (2013) 9803–9808.10.1016/j.ceramint.2013.04.110
  • K. Namratha, S. Suresha, M.B. Nayan, K. Byrappa, Synthesis, characterization, and photocatalytic properties of surface modified silver doped ZnO, Res. Chem. Intermed. 37 (2011) 531–539.10.1007/s11164-011-0282-2
  • C.R. Martins, G. Ruggeri, M.A. De-Paoli, Synthesis in pilot plant scale and physical properties of sulfonated polystyrene, J. Braz. Chem. Soc. 14 (2003) 797–802.10.1590/S0103-50532003000500015
  • J. He, Q.Z. Cai, D. Zhu, Q. Luo, D.Q. Zhang, X.W. Li, In-situ preparation of WO3/TiO2 composite film with increased photo quantum efficiency on titanium substrate, Curr. Appl. Phys. 11 (2011) 98–100.10.1016/j.cap.2010.06.026
  • M. Vautier, C. Guillard, J.M. Herrmann, Photocatalytic degradation of dyes in water: Case study of indigo and of indigo carmine, J. Catal. 201 (2001) 46–59.10.1006/jcat.2001.3232
  • J.C. Sin, S.M. Lam, K.T. Lee, A.R. Mohamed, Self-assembly fabrication of ZnO hierarchical micro/nanospheres for enhanced photocatalytic degradation of endocrine-disrupting chemicals, Mater. Sci. Semicond. Process. 16 (2013) 1542–1550.10.1016/j.mssp.2013.05.008
  • S.M. Lam, J.C. Sin, A.Z. Abdullah, A.R. Mohamed, Efficient photodegradation of endocrine-disrupting chemicals with Bi2O3–ZnO nanorods under a compact fluorescent lamp, Water Air Soil Pollut. 224 (2013) 1565.10.1007/s11270-013-1565-6
  • J.C. Sin, S.M. Lam, K.T. Lee, A.R. Mohamed, Preparation and photocatalytic properties of visible light-driven samarium-doped ZnO nanorods, Ceram. Int. 39 (2013) 5833–5843.10.1016/j.ceramint.2013.01.004
  • S.M. Lam, J.C. Sin, I. Satoshi, A.Z. Abdullah, A.R. Mohamed, Enhanced sunlight photocatalytic performance over Nb2O5/ZnO nanorod composites and the mechanism study, Appl. Catal. A: Gen. 471 (2014) 126–135.10.1016/j.apcata.2013.12.001
  • A.P. Toor, A. Verma, C.K. Jotshi, P.K. Bajpai, V. Singh, Photocatalytic degradation of Direct Yellow 12 dye using UV/TiO2 in a shallow pond slurry reactor, Dyes Pigm. 68 (2006) 53–60.10.1016/j.dyepig.2004.12.009
  • F.D. Mai, C.C. Chen, J.L. Chen, S.C. Liu, Photodegradation of methyl green using visible irradiation in ZnO suspensions, J. Chromatogr. A 1189 (2008) 355–365.10.1016/j.chroma.2008.01.027
  • N. Daneshvar, M.H. Rasoulifard, A.R. Khataee, F. Hosseinzadeh, Removal of C.I. Acid Orange 7 from aqueous solution by UV irradiation in the presence of ZnO nanopowder, J. Hazard. Mater. 143 (2007) 95–101.10.1016/j.jhazmat.2006.08.072
  • B. Krishnakumar, B. Subash, M. Swaminathan, AgBr–ZnO—An efficient nano-photocatalyst for the mineralization of Acid Black 1 with UV light, Sep. Purif. Technol. 85 (2012) 35–44.10.1016/j.seppur.2011.09.037
  • B. Subash, B. Krishnakumar, V. Pandiyan, M. Swaminathan, M. Shanthi, An efficient nanostructured Ag2S–ZnO for degradation of Acid Black 1 dye under day light illumination, Sep. Purif. Technol. 96 (2012) 204–213.10.1016/j.seppur.2012.06.002
  • S.K. Pardeshi, A.B. Patil, A simple route for photocatalytic degradation of phenol in aqueous zinc oxide suspension using solar energy, Solar Energy 82 (2008) 700–705.10.1016/j.solener.2008.02.007
  • S.G. Anju, S. Yesodharan, E.P. Yesodharan, Zinc oxide mediated sonophotocatalytic degradation of phenol in water, Chem. Eng. J. 189–190 (2012) 84–93.10.1016/j.cej.2012.02.032
  • H. Benhebal, M. Chaib, T.S. Geens, A. Leonard, S.D. Lambert, M. Crine, B. Heinrichs, Photocatalytic degradation of phenol and benzoic acid using zinc oxide powders prepared by the sol–gel process, AEJ 52 (2013) 517–523.
  • S.M. Lam, J.C. Sin, A.R. Mohamed, Parameter effect on photocatalytic degradation of phenol using TiO2-P25/activated carbon (AC), Korean J. Chem. Eng. 27 (2010) 1109–1116.10.1007/s11814-010-0169-8
  • S.M. Lam, J.C. Sin, A.Z. Abdullah, A.R. Mohamed, Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: A review, Desalin. Water Treat. 41 (2012) 131–169.10.1080/19443994.2012.664698
  • J.C. Sin, S.M. Lam, K.T. Lee, A.R. Mohamed, Photocatalytic performance of novel samarium-doped spherical-like ZnO hierarchical nanostructures under visible light irradiation for 2,4-dichlorophenol degradation, J. Colloid Interface Sci. 401 (2013) 40–49.10.1016/j.jcis.2013.03.043
  • P.F. Ji, J.L. Zhang, F. Chen, M. Anpo, Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation, Appl. Catal. B: Environ. 85 (2009) 148–154.10.1016/j.apcatb.2008.07.004
  • Y.X. Chen, S.Y. Yang, K. Wang, L.P. Lou, Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7, J. Photochem. Photobiol. A: Chem. 172 (2005) 47–54.10.1016/j.jphotochem.2004.11.006
  • X.W. Zhang, D.D. Sun, G.T. Li, Y.Z. Wang, Investigation of the roles of active oxygen species in photodegradation of azo dye AO7 in TiO2 photocatalysis illuminated by microwave electrodeless lamp, J. Photochem. Photobiol. A: Chem. 199 (2008) 311–315.10.1016/j.jphotochem.2008.06.009
  • J.F. Guo, J.X. Li, A.Y. Yin, K.N. Fan, W.L. Dai, Photodegradation of Rhodamine B on sulfur doped ZnO/TiO2 nanocomposite photocatalyst under visible-light irradiation, Chin. J. Chem. 28 (2010) 2144–2150.10.1002/cjoc.201090355
  • T. Kawai, T. Sakata, New Horizons in Catalysis: Part 7B, Elsevier Scientific Publishing Company, Amsterdam, 1981.
  • A. Tanaka, Y. Nishino, S. Sakaguchi, T. Yoshikawa, K. Imamura, K. Hashimoto, H. Kominami, Functionalization of a plasmonic Au/TiO2 photocatalyst with an Ag co-catalyst for quantitative reduction of nitrobenzene to aniline in 2-propanol suspensions under irradiation of visible light, Chem. Commun. 49 (2013) 2551–2553.10.1039/c3cc39096a
  • R.L. Qiu, D.D. Zhang, Y.Q. Mo, L. Song, E. Brewer, X.F. Huang, Y. Xiong, Photocatalytic activity of polymer-modified ZnO under visible light irradiation, J. Hazard. Mater. 156 (2008) 80–85.10.1016/j.jhazmat.2007.11.114
  • W.R. Cao, L.F. Chen, Z.W. Qi, Highly dispersed Ag2SO4 nanoparticles deposited on ZnO nanoflakes as photocatalysts, Catal. Lett. 144 (2014) 598–606.10.1007/s10562-013-1183-3
  • B.B. Zermeno, E. Moctezuma, R.G. Alamilla, Photocatalytic degradation phenol and 4-chlorophenol with titania, oxygen and ozone, Sustainable Environ. Res. 21 (2011) 299–305.
  • Z.J. Zhang, W.Z. Wang, M. Shang, W.Z. Yin, Photocatalytic degradation of Rhodamine B and phenol by solution combustion synthesized BiVO4 photocatalyst, Catal. Commun. 11 (2010) 982–986.10.1016/j.catcom.2010.04.013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.