224
Views
21
CrossRef citations to date
0
Altmetric
Articles

Removal of tetracyclines from aqueous solution by nanoscale Cu/Fe bimetallic particle

, , &
Pages 14762-14773 | Received 10 Sep 2014, Accepted 21 Jun 2015, Published online: 13 Jul 2015

References

  • J. Jiang, Z. Zhou, Occurrence and transform of emerging micropollutants in the environment, analytical challenges and treatment technologies: A global case study, in: Proceedings of 12th International Conference on Environmental Science and Technology, Rhodes, Greece, September 8–10, 2011.
  • M. Carballa, F. Omil, J.M. Lema, M. Llompart, C. García, I. Rodriguez, M. Gømez, T. Ternes, Behaviour of pharmaceuticals and personal care products in a sewage treatment plant of northwest Spain, Water Sci. Technol. 52(8) (2005) 29–35.
  • M. Carballa, F. Omil, J.M. Lema, Comparison of predicted and measured concentrations of selected pharmaceuticals, fragrances and hormones in Spanish sewage, Chemosphere 72 (2008) 1118–1123.10.1016/j.chemosphere.2008.04.034
  • A. Wick, Occurrence and fate of emerging organic micropollutants in biological wastewater treatment, Dissertation, Zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaft, Fachbereich 3: Mathematik/Naturwissenschaften, Universität Koblenz-Landau (2010).
  • J. Jeong, W. Song, W.J. Cooper, J. Jung, J. Greaves, Degradation of tetracycline antibiotics: Mechanisms and kinetic studies for advanced oxidation/reduction processes, Chemosphere 78 (2010) 533–540.10.1016/j.chemosphere.2009.11.024
  • K. Kümmerer, Antibiotics in the aquatic environment – A review – Part I, Chemosphere 75 (2009) 417–434.10.1016/j.chemosphere.2008.11.086
  • A.K. Sarmah, M.T. Meyer, A.B.A. Boxall, A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment, Chemosphere 65 (2006) 725–759.10.1016/j.chemosphere.2006.03.026
  • Y. Lin, S. Xu, J. Li, Fast and highly efficient tetracyclines removal from environmental waters by graphene oxide functionalized magnetic particles, Chem. Eng. J. 225 (2013) 679–685.10.1016/j.cej.2013.03.104
  • B. Halling-Sørensen, S.N. Nors Nielsen, P.F. Lanzky, F. Ingerslev, H.C.H. Lützhøft, S.E. Jørgensen, Occurrence, fate and effects of pharmaceutical substances in the environment – A review, Chemosphere 36(2) (1998) 357–393.10.1016/S0045-6535(97)00354-8
  • Z.H. Li, L. Schulz, C. Ackley, N. Fenske, Adsorption of tetracycline on kaolinite with pH-dependent surface charges, J. Colloid Interface Sci. 351 (2010) 254–260.10.1016/j.jcis.2010.07.034
  • H. Liu, Y. Yang, J. Kang, M. Fan, J. Qu, Removal of tetracycline from water by Fe-Mn binary oxide, J. Environ. Sci. 24(2) (2012) 242–247.10.1016/S1001-0742(11)60763-8
  • K. Li, A. Yediler, M. Yang, S. Schulte-Hostede, M.H. Wong, Ozonation of oxytetracycline and toxicological assessment of its oxidation by-products, Chemosphere 72 (2008) 473–478.10.1016/j.chemosphere.2008.02.008
  • M.H. Khan, H. Bae, J.Y. Jung, Tetracycline degradation by ozonation in the aqueous phase: Proposed degradation intermediates and pathway, J. Hazard. Mater. 181(1–3) (2010) 659–665.10.1016/j.jhazmat.2010.05.063
  • K.J. Choi, H.-J. Son, S.H. Kim, Ionic treatment for removal of sulfonamide and tetracycline classes of antibiotic, Sci. Total Environ. 387 (2007) 247–256.10.1016/j.scitotenv.2007.07.024
  • K.J. Choi, S.G. Kim, S.H. Kim, Removal of antibiotics by coagulation and granular activated carbon filtration, J. Hazard. Mater. 151 (2008) 38–43.10.1016/j.jhazmat.2007.05.059
  • J. Rivera-Utrilla, C.V. Gómez-Pacheco, M. Sánchez-Polo, J.J. López-Peñalver, R. Ocampo-Pérez, Tetracycline removal from water by adsorption/bioadsorption on activated carbons and sludge-derived adsorbents, J. Environ. Manage. 131 (2013) 16–24.10.1016/j.jenvman.2013.09.024
  • L. Zhang, X.Y. Song, X.Y. Liu, L.J. Yang, F. Pan, J. Lv, Studies on the removal of tetracycline by multi-walled carbon nanotubes, Chem. Eng. J. 178 (2011) 26–33.10.1016/j.cej.2011.09.127
  • R.W. Gillham, S.F. O’Hannesin, Enhanced degradation of halogenated aliphatics by zero-valent iron, Ground Water 32 (1994) 958–967.10.1111/gwat.1994.32.issue-6
  • X. Lv, Y. Hu, J. Tang, T. Sheng, G. Jiang, X. Xu, Effects of co-existing ions and natural organic matter on removal of chromium(VI) from aqueous solution by nanoscale zero valent iron (nZVI)-Fe3O4 nanocomposites, Chem. Eng. J. 218 (2013) 55–64.10.1016/j.cej.2012.12.026
  • C.B. Wang, W.X. Zhang, Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs, Environ. Sci. Technol. 31(7) (1997) 2154–2156.10.1021/es970039c
  • S. Luo, P. Qin, J. Shao, L. Peng, Q. Zeng, J. Gu, Synthesis of reactive nanoscale zero valent iron using rectorite supports and its application for orange II removal, Chem. Eng. J. 223 (2013) 1–7.10.1016/j.cej.2012.10.088
  • X. Ling, J. Li, W. Zhu, Y. Zhu, X. Sun, J. Shen, W. Han, L. Wang, Synthesis of nanoscale zero-valent iron/ordered mesoporous carbon for adsorption and synergistic reduction of nitrobenzene, Chemosphere 87 (2012) 655–660.10.1016/j.chemosphere.2012.02.002
  • R.A. Crane, T.B. Scott, Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology – Review, J. Hazard. Mater. 211–212 (2012) 112–125.10.1016/j.jhazmat.2011.11.073
  • E. Keane, Fate, transport, and toxicity of nanoscale zero-valent iron (nZVI) used during superfund remediation, US Environmental Protection Agency Office of Solid Waste and Emergency Response Office of Superfund Remediation and Technology Innovation, Washington, DC, 2009.
  • A. Ghauch, A. Tuqan, H.A. Assi, Antibiotic removal from water: Elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles, Environ. Pollut. 157 (2009) 1626–1635.10.1016/j.envpol.2008.12.024
  • D. O’Carroll, B. Sleep, M. Krol, H. Boparai, C. Kocur, Nanoscale zero valent iron and bimetallic particles for contaminated site remediation, Adv. Water Resour. 51 (2013) 104–122.10.1016/j.advwatres.2012.02.005
  • X. Li, D.W. Elliott, W. Zhang, Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects, Crit. Rev. Solid State Mater. Sci. 31 (2006) 111–122.10.1080/10408430601057611
  • G.A. Mansoori, T. Rohani Bastami, A. Ahmadpour, Z. Eshaghi, Environmental application of nanotechnology, Chapter 2, Annu. Rev. Nano Res. 2 (2008) 1–73.
  • K.D. Grieger, A. Fjordbøge, N.B. Hartmann, E. Eriksson, P.L. Bjerg, A. Baun, Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: Risk mitigation or trade-off? J. Contam. Hydrol. 118 (2010) 165–183.10.1016/j.jconhyd.2010.07.011
  • W.J. Liu, T.T. Qian, H. Jiang, Bimetallic Fe nanoparticles: Recent advances in synthesis and application in catalytic elimination of environmental pollutants, Chem. Eng. J. 236 (2014) 448–463.10.1016/j.cej.2013.10.062
  • Z.Q. Fang, X.H. Qiu, J.H. Chen, X.Q. Qiu, Degradation of metronidazole by nanoscale zero-valent metal prepared from steel pickling waste liquor, Appl. Catal. B: Environ. 100 (2010) 221–228.10.1016/j.apcatb.2010.07.035
  • Z.Q. Fang, J.H. Chen, X.H. Qiu, X.Q. Qiu, W. Cheng, L.C. Zhu, Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles, Desalination 268 (2011) 60–67.10.1016/j.desal.2010.09.051
  • G.G. Raja, R. Parthiban, K. Pandian, Effective removal of antibiotic metronidazole from water by using bimetallic nanoparticles, J. Innov. Res. Sol. (JIRAS) 1(1) (2014) 245–253.
  • C. Gu, K.G. Karthikeyan, S.D. Sibley, J.A. Pedersen, Complexation of the antibiotic tetracycline with humic acid, Chemosphere 66 (2007) 1494–1501.10.1016/j.chemosphere.2006.08.028
  • Y.H. Hwang, D.G. Kim, H.S. Shin, Effects of synthesis conditions on the characteristics and reactivity of nano scale zero valent iron, Appl. Catal. B 105 (2011) 144–150.10.1016/j.apcatb.2011.04.005
  • J.P. Fennelly, A.L. Roberts, Reaction of 1,1,1-trichloroehane with zero-valent metals and bimetallic reductants, Env. Sci. Technol. 32 (1998) 1980–1988.10.1021/es970784p
  • K.V. Kumar, K. Porkodi, Mass transfer, kinetics and equilibrium studies for the biosorption of methylene blue using Paspalum notatum, J. Hazard. Mater. 146 (2007) 214–226.10.1016/j.jhazmat.2006.12.010
  • Z. Qiang, C. Adams, Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics, Water Res. 38(12) (2004) 2874–2890.10.1016/j.watres.2004.03.017
  • C. Gu, K.G. Karthikeyan, Interaction of tetracycline with aluminum and iron hydrous oxides, Env. Sci. Technol. 39 (2005) 2660–2667.10.1021/es048603o
  • E. Tanis, K. Hanna, E. Emmanuel, Experimental and modeling studies of sorption of tetracycline onto iron oxides-coated quartz, Colloids Surf. A 327 (2008) 57–63.10.1016/j.colsurfa.2008.06.013
  • H. Chen, H. Luo, Y. Lan, T. Dong, B. Hu, Y. Wang, Removal of tetracycline from aqueous solutions using polyvinylpyrrolidone (PVP-K30) modified nanoscale zero valent iron, J. Hazard. Mater. 192 (2011) 44–53.
  • Y.J. Shi, X.H. Wang, Z. Qi, M.H. Diao, M.M. Gao, S.F. Xing, S.G. Wang, X.C. Zhao, Sorption and biodegradation of tetracycline by nitrifying granules and the toxicity of tetracycline on granules, J. Hazard. Mater. 191 (2011) 103–109.10.1016/j.jhazmat.2011.04.048
  • P.H. Chang, Z. Li, J.S. Jean, W.T. Jiang, C.J. Wang, K.H. Lin, Adsorption of tetracycline on 2:1 layered non-swelling clay mineral illite, Appl. Clay Sci. 67–68 (2012) 158–163.10.1016/j.clay.2011.11.004
  • N. Liu, M. Wang, M. Liu, F. Liu, L. Weng, L.K. Koopal, W. Tan, Sorption of tetracycline on organo-montmorillonites, J. Hazard. Mater. 225–226 (2012) 28–35.10.1016/j.jhazmat.2012.04.060
  • Y. Gao, Y. Li, L. Zhang, H. Huang, J. Hu, S.M. Shah, X. Su, Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide, J. Colloid Interf. Sci. 368 (2012) 540–546.10.1016/j.jcis.2011.11.015
  • Ö. Hanay, H. Türk, Comprehensive evaluation of adsorption and degradation of tetracycline and oxytetracycline by nanoscale zero-valent iron, Desalin. Water Treat. (2013) 1–9.
  • M.S. Chiou, H.Y. Li, Equilibrium and kinetic modeling of adsorption of reactive dye on cros linked chitosan beads, Chemosphere 50 (2002) 1095–1105.
  • A. Jia, Y. Xiao, J. Hu, M. Asami, S. Kunikane, Simultaneous determination of tetracyclines and their degradation products in environmental waters by liquid chromatography-electrospray tandem mass spectrometry, J. Chromatogr. A 1216 (2009) 4655–4662.10.1016/j.chroma.2009.03.073

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.