83
Views
10
CrossRef citations to date
0
Altmetric
Articles

Oxidative degradation of Rhodamine B in aqueous solution using Fe/PANI nanoparticles in the presence of AQS serving as an electron shuttle

, , , , , & show all
Pages 15190-15199 | Received 10 Dec 2014, Accepted 01 Jul 2015, Published online: 24 Jul 2015

References

  • Z.Q. Shi, J.T. Nurmi, P.G. Tratnyek, Effects of nano zero-valent iron on oxidation−reduction potential, Environ. Sci. Technol. 45 (2011) 1586–1592.10.1021/es103185t
  • H. Song, E.R. Carraway, Reduction of chlorinated ethanes by nanosized zero-valent iron: Kinetics, pathways, and effects of reaction conditions, Environ. Sci. Technol. 39 (2005) 6237–6245.10.1021/es048262e
  • R.F. Yu, H.W. Chen, W.P. Cheng, Y.J. Lin, C.L. Huang, Monitoring of ORP, pH and DO in heterogeneous Fenton oxidation using nZVI as a catalyst for the treatment of azo-dye textile wastewater, J. Taiwan Inst. Chem. Eng. 45 (2014) 947–954.10.1016/j.jtice.2013.09.006
  • W.X. Zhang, Nanoscale iron for environmental remediation: An overview, J. Nanopart. Res. 5 (2003) 323–332.10.1023/A:1025520116015
  • Y.P. Sun, X.Q. Li, W.X. Zhang, H.P. Wang, A method for the preparation of stable dispersion of zero-valent iron nanoparticles, Colloids Surf., A 308 (2007) 60–66.10.1016/j.colsurfa.2007.05.029
  • Y.Y. Xie, Z.Q. Fang, X.H. Qiu, Comparisons of the reactivity, reusability and stability of four different zero-valent iron-based nanoparticles, Chemosphere. 108 (2014) 433–436.10.1016/j.chemosphere.2014.01.076
  • S. Bleyl, F.D. Kopinke, K. Mackenzie, Carbo-Iron@—synthesis and stabilization of Fe(0)-doped colloidal activated carbon for in situ groundwater treatment, Chem. Eng. J. 191 (2012) 588–595.10.1016/j.cej.2012.03.021
  • K. Mackenzie, S. Bleyl, A. Georgi, F.D. Kopinke, Carbo-Iron-An Fe/AC composite-as alternative to nano-iron for groundwater treatment, Water Res. 46 (2012) 3817–3826.10.1016/j.watres.2012.04.013
  • Y. Geng, J. Li, Z. Sun, X. Jing, F. Wang, Polymerization of aniline in an aqueous system containing organic solvents, Synth. Met. 96 (1998) 1–6.10.1016/S0379-6779(98)00032-0
  • I. Dror, O.M. Jacov, A. Cortis, B. Berkowitz, Catalytic transformation of persistent contaminants using a new composite material based on nanosized zero-valent iron, ACS. Appl. Mater. Interfaces. 4 (2012) 3416–3423.10.1021/am300402q
  • P. Alexander, O. Nikolay, K. Alexander, Some aspects of preparation methods and properties of polyaniline blends and composites with organic polymers, Prog. Polym. Sci. 28 (2003) 1701–1753.
  • S. Tsutomu, E.N. Eric, L.C. Edward, A.A. Williama, A polymer membrane containing Fe0 as a contaminant barrier, Environ. Sci. Technol. 38 (2004) 2264–2270.
  • T.A. Khan, S. Sharma, I. Ali, Adsorption of Rhodamine B dye from aqueous solution onto acid activated mango (Magnifera indica) leaf powder: Equilibrium, kinetic and thermodynamic studies, J. Toxicol. Environ. Health Sci. 3 (2011) 286–297.
  • T.A. Khan, M. Nazir, E.A. Khan, Adsorptive removal of Rhodamine B from textile wastewater using water chestnut (Trapa natans L.) peel: Adsorption dynamics and kinetic studies, Toxicol. Environ. Chem. 95 (2013) 919–931.10.1080/02772248.2013.840369
  • C. Lee, C.R. Keenan, D.L. Sedlak, Polyoxometalate-enhanced oxidation of organic compounds by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen, Environ. Sci. Technol. 42 (2008) 4921–4926.10.1021/es800317j
  • R.A. Doong, H.C. Chiang, Transformation of carbon tetrachloride by thiol reductants in the presence of quinone compounds, Environ. Sci. Technol. 39 (2005) 7460–7468.10.1021/es047956k
  • F. Aulenta, V.D. Maio, T. Ferri, M. Majone, The humic acid analogue antraquinone-2,6-disulfonate (AQDS) serves as an electron shuttle in the electricity-driven microbial dechlorination of trichloroethene to cis-dichloroethene, Bioresour. Technol. 101 (2010) 9728–9733.10.1016/j.biortech.2010.07.090
  • Y.Q. Leng, W.L. Guo, X. Shi, Degradation of Rhodamine B by persulfate activated with Fe3O4: Effect of polyhydroquinone serving as an electron shuttle, Chem. Eng. J. 240 (2014) 338–343.10.1016/j.cej.2013.11.090
  • X.S. Lv, J. Xu, G.M. Jiang, X.H. Xu, Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes, Chemosphere. 85 (2011) 1204–1209.10.1016/j.chemosphere.2011.09.005
  • D. Li, J. Huang, R.B. Kaner, Polyaniline nanofibers: A unique polymer nanostruc-ture for versatile applications, Acc. Chem. Res. 42 (2009) 135–145.10.1021/ar800080n
  • Q. Wang, S. Snyder, J. Kim, H. Choi, Aqueous ethanol modified nanoscale zerova-lent iron in bromate reduction: Synthesis, characterization, and reactivity, Environ. Sci. Technol. 43 (2009) 3292–3299.10.1021/es803540b
  • J. Su, S. Lin, Z. Chen, M. Megharaj, R. Naidu, Dechlorination of p-chlorophenol from aqueous solution using bentonite supported Fe/Pd nanoparticles: Synthesis, characterization and kinetics, Desalination. 280 (2011) 167–173.10.1016/j.desal.2011.06.067
  • J. Zhou, S. Yang, J. Yu, Z. Shu, Novel hollow microspheres of hierarchical zinc-aluminum layered double hydroxides and their enhanced adsorption capacity for phosphate in water, J. Hazard. Mater. 192 (2011) 1114–1121.10.1016/j.jhazmat.2011.06.013
  • V.R. Pereira, A.M. Isloor, U.K. Bhat, A.F. Ismail, Preparation and antifouling properties of PVDF ultrafiltration membranes with polyaniline (PANI) nanofibers and hydrolysed PSMA (H-PSMA) as additives, Desalination. 351 (2014) 220–227.10.1016/j.desal.2014.08.002
  • S.S. Azim, S. Sathiyanarayanan, G. Venkatachari, Anticorrosive properties of PANI-ATMP polymer containing organic coating, Prog. Org. Coat. 56 (2006) 154–158.10.1016/j.porgcoat.2006.03.004
  • X. Li, W. Zhang, Iron nanoparticles: The core-shell structure and unique properties for Ni(II) sequestration, Langmuir. 22 (2006) 4638–4642.10.1021/la060057k
  • X.Q. Li, D.W. Elliott, W.X. Zhang, Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects, Crit. Rev. Solid State Mater. Sci. 31 (2006) 111–122.10.1080/10408430601057611
  • P.G. Tratnyek, M.M. Scherer, B.L. Deng, S.D. Hu, Effects of natural organic matter, anthropogenic surfactants, and model quinones on the reduction of contaminants by zero-valent iron, Water Res. 35 (2001) 4435–4443.10.1016/S0043-1354(01)00165-8
  • C.R. Keenan, D.L. Sedlak, Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen, Environ. Sci. Technol. 42 (2008) 1262–1267.10.1021/es7025664
  • S. Song, M. Xia, Z.Q. He, H.P. Ying, B.S. Lü, J.M. Chen, Degradation of p-nitrotoluene in aqueous solution by ozonation combined with sonolysis, J. Hazard. Mater. 144 (2007) 532–537.10.1016/j.jhazmat.2006.10.067
  • A.E. Harvey, J.A. Smart, E.S. Amis, Simultaneous spectrophotometric determination of Iron(II) and total iron with 1,10-phenanthroline, Anal. Chem. 27 (1955) 26–29.10.1021/ac60097a009
  • G. Zhang, Y. Gao, Y. Zhang, Y. Guo, Fe2O3-pillared rectorite as an efficient and stable fenton-like heterogeneous catalyst for photodegradation of organic contaminants, Environ. Sci. Technol. 44 (2010) 6384–6389.10.1021/es1011093
  • F.F. Hao, W.L. Guo, X. Lin, Y.Q. Leng, A.Q. Wang, X.X. Yue, L.G. Yan, Degradation of acid orange 7 in aqueous solution by dioxygen activation in a pyrite/H2O/O2 system, Environ. Sci. Pollut. Res. 21(2014) 6723–6728.10.1007/s11356-014-2589-1
  • T. Amaya, T. Ito, Y. Inada, D. Saio, T. Hirao, Gold nanoparticles catalyst with redox-active poly(aniline sulfonic acid): Application in aerobic dehydrogenative oxidation of cyclic amines in aqueous solution, Tetrahedron Lett. 53 (2012) 6144–6147.10.1016/j.tetlet.2012.09.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.