82
Views
0
CrossRef citations to date
0
Altmetric
Articles

Photocatalytic degradation of indole–4-methylphenol mixture in an aqueous solution: optimization and statistical analysis

, , &
Pages 17039-17050 | Received 04 Mar 2015, Accepted 04 Aug 2015, Published online: 21 Sep 2015

References

  • I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations, Appl. Catal. B: Environ. 49 (2004) 1–14.10.1016/j.apcatb.2003.11.010
  • T. Van Gerven, G. Mul, J. Moulijn, A. Stankiewicz, A review of intensification of photocatalytic processes, Chem. Eng. Process. 46 (2007) 781–789.10.1016/j.cep.2007.05.012
  • J. Wiszniowski, D. Robert, J. Surmacz-Gorska, K. Miksch, S. Malato, J.V. Weber, Solar photocatalytic degradation of humic acids as a model of organic compounds of landfill leachate in pilot-plant experiments: Influence of inorganic salts, Appl. Catal. B: Environ. 53 (2004) 127–137.10.1016/j.apcatb.2004.04.017
  • J. Bohdziewicz, M. Bodzek, J. Górska, Application of pressure-driven membrane techniques to biological treatment of landfill leachate, Process Biochem. 36 (2001) 641–646.10.1016/S0032-9592(00)00259-4
  • M.I. Badawy, M.E.M. Ali, M.Y. Ghaly, M.A. El-Missiry, Mesoporous simonkolleite–TiO2 nanostructured composite for simultaneous photocatalytic hydrogen production and dye decontamination, Process Saf. Environ. Prot. 94 (2015) 11–17.10.1016/j.psep.2014.12.001
  • A.N. Ökte, D. Tuncel, A.H. Pekcan, T. Özden, Characteristics of iron-loaded TiO2-supported montmorillonite catalysts: β-Naphthol degradation under UV-A irradiation, J. Chem. Technol. Biotechnol. 89 (2014) 1155–1167.
  • T.E. Agustina, H.M.Ang, V.K. Vareek, A review of synergistic effect of photocatalysis and ozonation on wastewater treatment, J. Photochem. Photobiol., C, 6 (2005) 264–273.10.1016/j.jphotochemrev.2005.12.003
  • P.A. Deveau, F. Arsac, P.X. Thivel, C. Ferronato, F. Delpech, J.M. Chovelon, P. Kaluzny, C. Monnet, Different methods in TiO2 photodegradation mechanism studies: Gaseous and TiO2-adsorbed phases, J. Hazard. Mater. 144 (2007) 692–697.10.1016/j.jhazmat.2007.01.097
  • Y. Dong, D. Tang, Ch Li, Photocatalytic oxidation of methyl orange in water phase by immobilized TiO2-carbon nanotube nanocomposite photocatalyst, Appl. Surf. Sci. 296 (2014) 1–7.10.1016/j.apsusc.2013.12.128
  • V. Romero, F. Méndez-Arriaga, P. Marco, J. Giménez, S. Esplugas, Comparing the photocatalytic oxidation of Metoprolol in a solarbox and a solar pilot plant reactor, Chem. Eng. J. 254 (2014) 17–29.10.1016/j.cej.2014.05.109
  • P.B. Amama, K. Itoh, M. Murabayashi, Photocatalytic degradation of trichloroethylene in dry and humid atmospheres: Role of gas-phase reactions, J. Mol. Catal. A: Chem. 217 (2004) 109–115.10.1016/j.molcata.2004.03.016
  • C.B. Almquist, P. Biswas, Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity, J. Catal. 212 (2002) 145–156.10.1006/jcat.2002.3783
  • V. Vaiano, G. Iervolino, D. Sannino, L. Rizzo, G. Sarno, A. Farina, Enhanced photocatalytic oxidation of arsenite to arsenate in water solutions by a new catalyst based on MoOx supported on TiO2, Appl. Catal. B: Environ. 160–161 (2014) 247–253.
  • P. Xu, G.M. Zeng, D.L. Huang, Ch.L. Feng, Sh. Hu, M.H. Zhao, C. Lai, Zh. Wei, Ch. Huang, G.X. Xie, Zh.F. Liu, Use of iron oxide nanomaterials in wastewater treatment: A review, Sci. Total Environ. 424 (2012) 1–10.10.1016/j.scitotenv.2012.02.023
  • K. Pirkanniemi, M. Sillanpää, Heterogeneous water phase catalysis as an environmental application: A review, Chemosphere 48 (2002) 1047–1060.10.1016/S0045-6535(02)00168-6
  • İ. Altın, M. Sökmen, Buoyant photocatalyst based on ZnO immobilized on polystyrene beads for pollution treatment, Clean Soil 43 (2015) 1025–1030.
  • G. Marcì, V. Augugliaro, M.J. López-Muñoz, C. Martín, L. Palmisano, V. Rives, M. Schiavello, R.J.D. Tilley, A.M. Venezia, Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems. 1. Surface and bulk characterization, J. Phys. Chem. B 105 (2001) 1026–1032.10.1021/jp003172r
  • A. Rezaee, H. Masoumbeigi, R.D.Ch. Soltani, A.R. Khataee, S. Hashemiyan, Photocatalytic decolorization of methylene blue using immobilized ZnO nanoparticles prepared by solution combustion method, Desalin. Water Treat. 44 (2012) 1–3.
  • R. Darvishi, Ch Soltani, A. Rezaee, A.R. Khataee, M. Safari, Photocatalytic process by immobilized carbon black/ZnO nanocomposite for dye removal from aqueous medium: Optimization by response surface methodology, J. Ind. Eng. Chem. 20 (2014) 1861–1868.
  • M Sleiman, D. Vildozo, C. Ferronato, J.-M. Chovelon, Photocatalytic degradation of azo dye Metanil Yellow: Optimization and kinetic modeling using a chemometric approach, Appl. Catal. B: Environ. 77 (2007) 1–11.10.1016/j.apcatb.2007.06.015
  • F. Herrera, A. Lopez, J. Kiwi, Photochemically activated degradation of reactive dyes, J. Photochem. Photobiol., A 135 (2000) 45–51.10.1016/S1010-6030(00)00273-2
  • E. Oliveros, O. Legrini, M. Hohl, T. Muller, A.M. Braun, Large scale development of a light-enhanced fenton reaction by optimal experimental design, Water Sci. Technol. 35 (1997) 223–230.10.1016/S0273-1223(97)00029-2
  • M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: A review, Water Res. 44 (2010) 2997–3027.10.1016/j.watres.2010.02.039
  • I.A. Appavoo, J. Hu, Y. Huang, S.F.Y. Li, S.L. Ong, Response surface modeling of Carbamazepine (CBZ) removal by Graphene-P25 nanocomposites/UVA process using central composite design, Water Res. 57 (2014) 270–279.10.1016/j.watres.2014.03.007
  • I.H. Cho, K.D. Zoh, Photocatalytic degradation of azo dye (Reactive Red 120) in TiO2/UV system: Optimization and modeling using a response surface methodology (RSM) based on the central composite design, Dyes Pigm. 75 (2007) 533–543.10.1016/j.dyepig.2006.06.041
  • H.-L. Liu, Y.-R. Chiou, Optimal decolorization efficiency of Reactive Red 239 by UV/TiO2 photocatalytic process coupled with response surface methodology, Chem. Eng. J. 112 (2005) 173–179.10.1016/j.cej.2005.07.012
  • A. Danion, C. Bordes, J. Disdier, J.V. Gauvrit, C. Guillard, P. Lantéri, N. Jaffrezic-Renault, Optimization of a single TiO2 coated optical fiber reactor using experimental design, J. Photochem. Photobiol., A 168 (2004) 161–167.10.1016/j.jphotochem.2004.03.002
  • J. Fernández, J. Kiwi, C. Lizama, J. Freer, J. Baeza, H.D. Mansilla, Factorial experimental design of Orange II photocatalytic discolouration, J. Photochem. Photobiol., A 151 (2002) 213–219.10.1016/S1010-6030(02)00153-3
  • B.K. Körbahti, Response surface optimization of electrochemical treatment of textile dye wastewater, J. Hazard. Mater. 145 (2007) 277–286.10.1016/j.jhazmat.2006.11.031
  • K. Ravikumar, K. Pakshirajan, T. Swaminathan, K. Balu, Optimization of batch process parameters using response surface methodology for dye removal by a novel adsorbent, Chem. Eng. J. 105 (2005) 131–138.10.1016/j.cej.2004.10.008
  • M. Rajasimman, R. Sangeetha, P. Karthik, Statistical optimization of process parameters for the extraction of chromium(VI) from pharmaceutical wastewater by emulsion liquid membrane, Chem. Eng. J. 150 (2009) 275–279.10.1016/j.cej.2008.12.026
  • A. Aleboyeh, N. Daneshvar, M.B. Kasiri, Optimization of C.I. Acid Red 14 azo dye removal by electrocoagulation batch process with response surface methodology, Chem. Eng. Process. 47 (2008) 827–832.10.1016/j.cep.2007.01.033
  • A. Özer, G. Gürbüz, A.C. ÇalimliB.K Körbahti, Biosorption of copper(II) ions on Enteromorpha prolifera: Application of response surface methodology (RSM), Chem. Eng. J. 146 (2009) 377–387.10.1016/j.cej.2008.06.041
  • B.K. Korbahti, M.A. Rauf, Application of response surface analysis to the photolytic degradation of Basic Red 2 dye, Chem. Eng. J. 138 (2008) 166–171.
  • G.E.P. Box, W.G. Hunter, J.S. Hunter, Statistics for Experimenters: An Introduction to Design, Data Analysis and Model Building, Wiley, New York, NY, 1978.
  • S. Merabet, A. Bouzaza, D. Wolbert, Photocatalytic degradation of indole in a circulating upflow reactor by UV/TiO2 process-Influence of some operating parameters, J. Hazard. Mater. 166 (2009) 1244–1249.10.1016/j.jhazmat.2008.12.047
  • S.H.S. Chan, T.Y. Yeong Wu, J.C. Juan, C. Teh, Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water, J. Chem. Technol. Biotechnol. 86 (2011) 1130–1158.10.1002/jctb.v86.9
  • H.M. Kim, J.G. Kim, J.D. Cho, J.W. Hong, Optimization and characterization of UV-curable adhesives for optical communications by response surface methodology, Polym. Testing 22 (2003) 899–906.10.1016/S0142-9418(03)00038-2
  • D.C. Montgomery, Design and Analysis of Experiments, third ed., Wiley, New York, NY, 1991.
  • G. Box, W.G. Hunter, Statistics for Experiments: An Introduction to Design, Data Analysis and Model Building, Wiley Interscience, Princeton, NJ, 1987.
  • D.C. Montgomry, Design and Analysis of Experiments, fifth ed., John Wiley and Sons, New York, NY, 2001.
  • V. Koutantou, M. Kostadima, E. Chatzisymeon, Z. Frontistis, V. Binas, D. Venieri, D. Mantzavinos, Solar photocatalytic decomposition of estrogens over immobilized zinc oxide, Catal. Today 209 (2013) 66–73.10.1016/j.cattod.2012.11.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.