67
Views
8
CrossRef citations to date
0
Altmetric
Articles

Removal of Ni(II) in aqueous solutions by foam fractionation

, , , &
Pages 18724-18729 | Received 29 Jan 2015, Accepted 04 Sep 2015, Published online: 29 Sep 2015

References

  • F.A. Abu Al-Rub, Biosorption of zinc on palm tree leaves: Equilibrium, kinetics, and thermodynamics studies, Sep. Sci. Technol. 41 (2006) 3499–3515.10.1080/01496390600915015
  • S. Kang, J. Lee, K. Kim, Biosorption of Cr(III) and Cr(VI) onto the cell surface of Pseudomonas aeruginosa, Biochem. Eng. J. 36 (2007) 54–58.10.1016/j.bej.2006.06.005
  • A.K. Bhattacharya, S.N. Mandal, S.K. Das, Adsorption of Zn(II) from aqueous solution by using different adsorbents, Chem. Eng. J. 123 (2006) 43–51.10.1016/j.cej.2006.06.012
  • C.E. Borba, R. Guirardello, E.A. Silva, M.T. Veit, C.R.G. Tavares, Removal of nickel(II) ions from aqueous solution by biosorption in a fixed bed column: Experimental and theoretical breakthrough curves, Biochem. Eng. J. 30 (2006) 184–191.10.1016/j.bej.2006.04.001
  • S. Islamoglu, L. Yilmaz, H.O. Ozbelge, Development of a precipitation based separation scheme for selective removal and recovery of heavy metals from cadmium rich electroplating industry effluents, Sep. Sci. Technol. 41 (2006) 3367–3385.10.1080/01496390600851665
  • M. Arulmozhi, K.M. Begum, N. Anantharaman, Continuous foam separation of heavy metal ions from electroplating industrial effluent, Chem. Eng. Commun. 198 (2011) 541–551.
  • V.A. Lemos, E.V. dos Santos Vieira, E. dos Santos Silva, L.O. dos Santos, Dispersive liquid–liquid microextraction for preconcentration and determination of nickel in water, Clean—Soil, Air, Water 40 (2012) 268–271.10.1002/clen.v40.3
  • S.A. Levichev, O.L. Lobacheva, Foam separation of nickel and copper ions from dilute aqueous solutions, Russ. J. Appl. Chem. 78(11) (2005) 1869–1871.10.1007/s11167-005-0624-1
  • J.R. Karra, Y.G. Huang, K.S. Walton, Synthesis, characterization, and adsorption studies of nickel(II), zinc(II), and magnesium(II) coordination frameworks of BTTB, Cryst. Growth Des. 13 (2013) 1075–1081.10.1021/cg3013393
  • S. Vellaichamy, K. Palanivelu, Preconcentration and separation of copper, nickel and zinc in aqueous samples by flame atomic absorption spectrometry after column solid-phase extraction onto MWCNTs impregnated with D2EHPA-TOPO mixture, J. Hazard. Mater. 185 (2011) 1131–1139.10.1016/j.jhazmat.2010.10.023
  • Z.V.P. Murthy, L.B. Chaudhari, Rejection behavior of nickel ions from synthetic wastewater containing Na2SO4, NiSO4, MgCl2 and CaCl2 salts by nanofiltration and characterization of the membrane, Desalination 247 (2009) 610–622.10.1016/j.desal.2008.10.009
  • B. Alyüz, S. Veli, Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins, J. Hazard. Mater. 167 (2009) 482–488.10.1016/j.jhazmat.2009.01.006
  • S.O. Lesmana, N. Febriana, F.E. Soetaredjo, J. Sunarso, S. Ismadji, Studies on potential applications of biomass for the separation of heavy metals from water and wastewater, Biochem. Eng. J. 44 (2009) 19–41.10.1016/j.bej.2008.12.009
  • D.M. Zhang, G.M. Zeng, J.H. Huang, W.K. Bi, G.X. Xie, Spectroscopic studies of dye-surfactant interactions with the co-existence of heavy metal ions for foam fractionation, J. Environ. Sci. 24 (2012) 2068–2074.10.1016/S1001-0742(11)61046-2
  • T. Kinoshita, S. Nii, Foam separation of metal ions and the potential ‘green’ alternative to solvent extraction, Solvent Extr. Res. Dev. Jpn. 19 (2012) 1–15.10.15261/serdj.19.1
  • Z.L. Wu, W.G. Song, K. Lu, H.J. Zheng, L.W. Jiao, Removal of trace FeCl3 from aqueous solution by foam fractionation, Desalin. Water Treat. 36 (2011) 27–33.10.5004/dwt.2011.1629
  • H.R. Chen, C.C. Chen, A.S. Reddy, C.-Y. Chen, W.R. Li, M.-J. Tseng, H.-T. Liu, W. Pan, J.P. Maity, S.B. Atla, Removal of mercury by foam fractionation using surfactin, a biosurfactant, Int. J. Mol. Sci. 12 (2011) 8245–8258.10.3390/ijms12118245
  • R.H. Perry, D.W. Green, M.E. Prudich, Alternative Solid/Liquid Separations in Perry’s Chemical Engineers’ Handbook, eighth ed., McGraw-Hill Professional, New York, NY, 2007.
  • G.W. Cutting, Effect of froth structure and mobility on plant performance, Miner. Process. Extr. Metall. Rev. 5 (1989) 169–201.10.1080/08827508908952649

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.