49
Views
8
CrossRef citations to date
0
Altmetric
Articles

Efficient use of novel hybrid materials in the ultra-trace determination of arsenic from aqueous solutions: an electrochemical study

, , &
Pages 18730-18738 | Received 14 Apr 2015, Accepted 08 Sep 2015, Published online: 30 Sep 2015

References

  • J. Konta, Clay and man: Clay raw materials in the service of man, Appl. Clay Sci. 10 (1995) 275–335.10.1016/0169-1317(95)00029-4
  • S.M. Lee, D. Tiwari, Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: An overview, Appl. Clay Sci. 59–60 (2012) 84–102.10.1016/j.clay.2012.02.006
  • F. Bergaya, G. Lagaly, General introduction: Clays, clay minerals, and clay science, in: F. Bergaya, G. Theng, G. Lagaly (Eds.), Developments in Clay Science; Handbook of Clay Science, vol. 1, Elsevier, New York, NY, 2006 pp. 1–18.
  • Z.R. Liu, S.Q. Zhou, Adsorption of copper and nickel on Na-bentonite, Process Saf. Environ. Prot. 88 (2010) 62–66.10.1016/j.psep.2009.09.001
  • C.M. Futalan, C.C. Kan, M.L. Dalida, K.J. Hsien, C. Pascua, M.W. Wan, Comparative and competitive adsorption of copper, lead, and nickel using chitosan immobilized on bentonite, Carbohydr. Polym. 83 (2011) 528–536.10.1016/j.carbpol.2010.08.013
  • F.F.O. Orumwense, Removal of lead from water by adsorption on a kaolinitic clay, J. Chem. Technol. Biotechnol. 65 (1999) 363–369.
  • T.K. Sen, D. Gomez, Adsorption of zinc (Zn2+) from aqueous solution on natural bentonite, Desalination 267 (2011) 286–294.10.1016/j.desal.2010.09.041
  • D. Tiwari, S.M. Lee, Novel hybrid materials in the remediation of ground waters contaminated with As(III) and As(V), Chem. Eng. J. 204–206 (2012) 23–31.10.1016/j.cej.2012.07.086
  • T. Yang, M.L. Chen, L.H. Liu, J.H. Wang, P.K. Dasgupta, Iron(III) modification of Bacillus subtilis membranes provides record sorption capacity for arsenic and endows unusual selectivity for As(V), Environ. Sci. Technol. 46 (2012) 2251–2256.10.1021/es204034z
  • M. Chen, Y. Lin, C. Gu, J. Wang, Arsenic sorption and speciation with branch-polyethyleneimine modified carbon nanotubes with detection by atomic fluorescence spectrometry, Talanta 104 (2013) 53–57.10.1016/j.talanta.2012.11.034
  • L. Cornejo, H. Lienqueo, M. Arenas, J. Acarapi, D. Contreras, J. Yáñez, H.D. Mansilla, In field arsenic removal from natural water by zero-valent iron assisted by solar radiation, Environ. Pollut. 156 (2008) 827–831.10.1016/j.envpol.2008.05.022
  • M. Lin, C. Liao, Assessing the risks on human health associated with inorganic arsenic intake from groundwater-cultured milkfish in southwestern Taiwan, Food Chem. Toxicol. 46 (2008) 701–709.10.1016/j.fct.2007.09.098
  • K. Tyrovola, E. Peroulaki, N. Nikolaidis, Modeling of arsenic immobilization by zero valent iron, Eur. J. Soil Biol. 43 (2007) 356–367.10.1016/j.ejsobi.2007.03.011
  • WHO (World Health Organization), International Agency for Research on Cancer (IARC) Monographs on the Evaluation of Carcinogenic Risks to Humans, Supplement 7, 1987.
  • R. Domínguez-González, L. González Varela, P. Bermejo-Barrera, Functionalized gold nanoparticles for the detection of arsenic in water, Talanta 118 (2014) 262–269.10.1016/j.talanta.2013.10.029
  • D. Mohan, C.U. Pittman Jr., Arsenic removal from water/wastewater using adsorbents—A critical review, J. Hazard. Mater. 142 (2007) 1–53.10.1016/j.jhazmat.2007.01.006
  • A.F.M.Y. Haider, M. Hedayet Ullah, Z.H. Khan, F. Kabir, K.M. Abedin, Detection of trace amount of arsenic in groundwater by laser-induced breakdown spectroscopy and adsorption, Opt. Laser Technol. 56 (2014) 299–303.10.1016/j.optlastec.2013.09.002
  • F. Cacho, L. Lauko, A. Manova, E. Beinrohr, On-line electrochemical pre-concentration of arsenic on a gold coated porous carbon electrode for graphite furnace atomic absorption spectrometry, J. Anal. At. Spectrom. 27 (2012) 695–699.10.1039/c2ja10332j
  • N. Tavakkoli, S. Habibollahi, S.A. Tehrani, Modified activated carbon as solid phase extraction adsorbent for the preconcentration and determination of trace As(III) in environmental samples by graphite furnace atomic absorption spectrometry, Chin. J. Chem. 30 (2012) 665–669.10.1002/cjoc.201280010
  • M. Pistón, J. Silva, R. Pérez-Zambra, I. Dol, M. Knochen, Automated method for the determination of total arsenic and selenium in natural and drinking water by HG-AAS, Environ. Geochem. Health 34 (2012) 273–278.10.1007/s10653-011-9436-9
  • Y. Cai, Speciation and analysis of mercury, arsenic, and selenium by atmoic fluorescence spectrometry, Trends Anal. Chem. 19 (2000) 62–66.
  • M. Colon, M. Hidalgo, M. Iglesias, Arsenic determination by ICP-QMS with octopole collision/reaction cell. Overcome of matrix effects under vented and pressurized cell conditions, Talanta 85 (2011) 1941–1947.
  • M. Rajkumar, S. Thiagarajan, S.M. Chen, Electrochemical detection of arsenic in various water samples, Int. J. Electrochem. Sci. 6 (2011) 3164–3177.
  • A. Mardegan, P. Scopece, F. Lamberti, M. Meneghetti, L.M. Moretto, P. Ugo, Electroanalysis of trace inorganic arsenic with gold nanelectrode ensembles, Electroanalysis 24 (2012) 798–806.10.1002/elan.v24.4
  • L.H. Chen, R.H. Zhu, Spectrofluorimetric determination of arsenic(III) in water samples, Asian J. Chem. 23 (2011) 5271–5274.
  • H.I. Ulusoy, M. Akçay, R. Gürkan, Development of an inexpensive and sensitive method for the determination of low quantity of arsenic species in water samples by CPE–FAAS, Talanta 85 (2011) 1585–1591.10.1016/j.talanta.2011.06.053
  • J.R. Farrell, P.J. Iles, Y.J. Yuan, Determination of arsenic by hydride generation gas diffusion flow injection analysis with electrochemical detection, Anal. Chim. Acta 334 (1996) 193–197.10.1016/S0003-2670(96)00367-4
  • P. Gupta, R.N. Goyal, Polymelamine modified edge plane pyrolytic graphite sensor for the electrochemical assay of serotonin, Talanta 120 (2014) 17–22.10.1016/j.talanta.2013.11.075
  • I.K. Tonlé, E. Ngameni, H.L. Tcheumi, V. Tchiéda, C. Carteret, A. Walcarius, Sorption of methylene blue on an organoclay bearing thiol groups and application to electrochemical sensing of the dye, Talanta 74 (2008) 489–497.10.1016/j.talanta.2007.06.006
  • P. Manisankar, G. Selvanathan, C. Vedhi, Utilization of sodium montmorillonite clay-modified electrode for the determination of isoproturon and carbendazim in soil and water samples, Appl. Clay Sci. 29 (2005) 249–257.10.1016/j.clay.2005.01.006
  • L. Guo, Q. Zhang, Y. Huang, Q. Han, Y. Wang, Y. Fu, The application of thionine-graphene nanocomposite in chiral sensing for Tryptophan enantiomers, Bioelectrochemistry 94 (2013) 87–93.10.1016/j.bioelechem.2013.09.002
  • D. Tiwari, Thanhmingliana, Efficient use of hybrid materials in the remediation of aquatic environment contaminated with micro-pollutant diclofenac sodium, Chem. Eng. J. 263 (2015) 364–373.10.1016/j.cej.2014.10.102
  • A. Afkhami, H. Ghaedi, T. Madrakian, D. Nematollahi, B. Mokhtari, Electro-oxidation and voltammetric determination of oxymetholone in the presence of mestanolone using glassy carbon electrode modified with carbon nanotubes, Talanta 121 (2014) 1–8.10.1016/j.talanta.2013.12.047
  • T. Ndlovu, B.B. Mamba, S. Sampath, R.W. Krause, O.A. Arotiba, Voltammetric detection of arsenic on a bismuth modified exfoliated graphite electrode, Electrochim. Acta 128 (2014) 48–53.10.1016/j.electacta.2013.08.084
  • T. Gan, Z. Shi, J. Sun, Y. Liu, Simple and novel electrochemical sensor for the determination of tetracycline based on iron/zinc cations-exchanged montmorillonite catalyst, Talanta 121 (2014) 187–193.10.1016/j.talanta.2014.01.002
  • M. Tanaka, Y. Takahashi, N. Yamaguchi, K.-W. Kim, G. Zheng, M. Sakamitsu, The difference of diffusion coefficients in water for arsenic compounds at various pH and its dominant factors implied by molecular simulations, Geochim. Cosmochim. Acta 105 (2013) 360–371.10.1016/j.gca.2012.12.004
  • D. Salinas-Torres, F. Huerta, F. Montilla, E. Morallón, Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes, Electrochim. Acta 56 (2011) 2464–2470.10.1016/j.electacta.2010.11.023
  • Lalhmunsiama, D. Tiwari, S.M. Lee, Activated carbon and manganese coated activated carbon precursor to dead biomass in the remediation of arsenic contaminated water, Environ. Eng. Res. 17(S1) (2012) 41–48.
  • X. Dai, R.G. Compton, Direct electrodeposition of gold nanoparticles onto indium tin oxide film coated glass: Application to the detection of arsenic(III), Anal. Sci. 22 (2006) 567–570.10.2116/analsci.22.567
  • M.C. Teixeira, E. de F.L. Travers, A.A. Saczk, L.L. Okumura, M. das G. Cadosa, Z.M. Magriotis, M.D. de Oliveira, Cathodic stripping voltammetric determination of arsenic in sugarcane brandy at a modified carbon nanotube paste electrode, Food Chem. 154 (2014) 38–43.10.1016/j.foodchem.2013.12.076
  • I. Svancara, K. Vytras, A. Bobrowski, K. Kalcher, Determination of arsenic at a gold-plated carbon paste electrode using constant current stripping analysis, Talanta 58 (2002) 45–55.10.1016/S0039-9140(02)00255-2
  • L. Xiao, G.G. Wildgoose, R.G. Compton, Sensitive electrochemical detection of arsenic(III) using gold nanoparticle modified carbon nanotubes via anodic stripping voltammetry, Anal. Chim. Acta 620 (2008) 44–49.10.1016/j.aca.2008.05.015
  • X. Dai, O. Nekrassova, M.E. Hyde, R.G. Compton, Anodic stripping voltammetry of arsenic(III) using gold nanoparticle-modified electrodes, Anal. Chem. 76 (2004) 5924–5929.10.1021/ac049232x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.