1,606
Views
11
CrossRef citations to date
0
Altmetric
Articles

The influence of carbonization temperature on the modification of TiO2 in the removal of methyl orange from aqueous solution by adsorption

, , &
Pages 18825-18835 | Received 13 Jul 2015, Accepted 11 Sep 2015, Published online: 30 Sep 2015

References

  • M. Janus, E. Kusiak, J. Choina, J. Ziebro, A.W. Morawski, Enhanced adsorption of two azo dyes produced by carbon modification of TiO2, Desalination 249 (2009) 359–363.10.1016/j.desal.2009.04.013
  • J. Chen, L. Zhu, Catalytic degradation of Orange II by UV-Fenton with hydroxyl-Fe-pillared bentonite in water, Chemosphere 65 (2006) 1249–1255.10.1016/j.chemosphere.2006.04.016
  • E. Guibal, J. Roussy, Coagulation and flocculation of dye-containing solutions using a biopolymer (Chitosan), React. Funct. Polym. 67 (2007) 33–42.10.1016/j.reactfunctpolym.2006.08.008
  • I. Kabdasli, M. Gürel, O. Tünay, Characterization and treatment of textile printing wastewaters, Environ. Technol. 21 (2000) 1147–1155.10.1080/09593330.2000.9619001
  • B. Yahyaei, S. Azizian, Rapid adsorption of anionic dyes by ordered nanoporous alumina, Chem. Eng. J. 209 (2012) 589–596.10.1016/j.cej.2012.08.055
  • S. Jafari, S. Azizian, B. Jaleh, Adsorption kinetics of methyl violet onto TiO2 nanoparticles with different phases, Colloids Surf., A: Physicochem. Eng. Aspects 384 (2011) 618–623.10.1016/j.colsurfa.2011.05.030
  • B. Tanhaei, A. Ayati, M. Lahtinen, M. Sillanpää, Preparation and characterization of a novel chitosan/Al2O3/magnetite nanoparticles composite adsorbent for kinetic, thermodynamic and isotherm studies of Methyl Orange adsorption, Chem. Eng. J. 259 (2015) 1–10.10.1016/j.cej.2014.07.109
  • R.S. Raveendra, P.A. Prashanth, R. Hari Krishna, N.P. Bhagya, B.M. Nagabhushana, H. Raja Naika, K. Lingaraju, H. Nagabhushana, B. Daruka Prasad, Synthesis, structural characterization of nano ZnTiO3 ceramic: An effective azo dye adsorbent and antibacterial agent, J. Asian Ceram. Soc. 2 (2014) 357–365, doi: 10.1016/j.jascer.2014.07.008.
  • M. Khosravi, S. Azizian, Adsorption of anionic dyes from aqueous solution by iron oxide nanospheres, J. Ind. Eng. Chem. 20 (2014) 2561–2567.10.1016/j.jiec.2013.10.040
  • R. Wu, J.-H. Liu, L. Zhao, X. Zhang, J. Xie, B. Yu, X. Ma, S.-T. Yang, H. Wang, Y. Liu, Hydrothermal preparation of magnetic Fe3O4@C nanoparticles for dye adsorption, J. Environ. Chem. Eng. 2 (2014) 907–913.10.1016/j.jece.2014.02.005
  • K. Bubacz, B. Tryba, A.W. Morawski, The role of adsorption in decomposition of dyes on TiO2 and N-modified TiO2 photocatalysts under UV and visible light irradiations, Mater. Res. Bull. 47 (2012) 3697–3703.10.1016/j.materresbull.2012.06.038
  • A. Di Paola, G. Cufalo, M. Addamo, M. Bellardita, R. Campostrini, M. Ischia, R. Ceccato, L. Palmisano, Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions, Colloids Surf., A: Physicochem. Eng. Aspects 317 (2008) 366–376.10.1016/j.colsurfa.2007.11.005
  • B. Chládková, E. Evgenidou, L. Kvítek, A. Panáček, R. Zbořil, P. Kovář, D. Lambropoulou, Adsorption and photocatalysis of nanocrystalline TiO2 particles for Reactive Red 195 removal: effect of humic acids, anions and scavengers, Environ. Sci. Pollut. Res. (2015) 1–11, doi: 10.1007/s11356-015-4806-y.
  • S. Sabar, M.A. Nawi, W.S.W. Ngah, Photocatalytic removal of Reactive Red 4 dye by immobilised layer-by-layer TiO2/cross-linked chitosan derivatives system, Desalin. Water Treat. 1–7, doi: 10.1080/19443994.2015.1004113(2015).
  • S. Helali, E. Puzenat, N. Perol, M.-J. Safi, C. Guillard, Methylamine and dimethylamine photocatalytic degradation—Adsorption isotherms and kinetics, Appl. Catal. A: Gen. 402 (2011) 201–207.10.1016/j.apcata.2011.06.004
  • A.A. Vega, G.E. Imoberdorf, M. Mohseni, Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid in a fluidized bed photoreactor with composite template-free TiO2 photocatalyst, Appl. Catal. A: Gen. 405 (2011) 120–128.10.1016/j.apcata.2011.07.033
  • H. Han, R. Bai, Effect of thickness of photocatalyst film immobilized on a buoyant substrate on the degradation of methyl orange dye in aqueous solutions under different light irradiations, Ind. Eng. Chem. Res. 50 (2011) 11922–11929.10.1021/ie200787j
  • J. Matos, J. Laine, J.M. Herrmann, Association of activated carbons of different origins with titania in the photocatalytic purification of water, Carbon 37 (1999) 1870–1872.10.1016/S0008-6223(99)00198-0
  • J. Matos, J. Laine, J.M. Herrmann, Effect of the type of activated carbons on the photocatalytic degradation of aqueous organic pollutants by UV-irradiated Titania, J. Catal. 200 (2001) 10–20.10.1006/jcat.2001.3191
  • M. Janus, E. Kusiak, A. Morawski, Carbon modified TiO2 photocatalyst with enhanced adsorptivity for dyes from water, Catal. Lett. 131 (2009) 506–511.10.1007/s10562-009-9932-z
  • M. Janus, M. Inagaki, B. Tryba, M. Toyoda, A. Morawski, Carbon-modified TiO2 photocatalyst by ethanol carbonisation, Appl. Catal. B 63 (2006) 272–276.10.1016/j.apcatb.2005.10.005
  • M.-H. Baek, J.-W. Yoon, J.-S. Hong, J.-K. Suh, Application of TiO2-containing mesoporous spherical activated carbon in a fluidized bed photoreactor—Adsorption and photocatalytic activity, Appl. Catal. A: Gen. 450 (2013) 222–229.10.1016/j.apcata.2012.10.018
  • I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361–1403.10.1021/ja02242a004
  • H. Freundlich, Over the adsorption in solution, J. Phys. Chem. 57 (1906) 385–470.
  • R. Sips, On the structure of a catalyst surface, J. Chem. Phys. 16 (1948) 490–495.10.1063/1.1746922
  • B. Saha, C. Orvig, Biosorbents for hexavalent chromium elimination from industrial and municipal effluents, Coord. Chem. Rev. 254 (2010) 2959–2972.10.1016/j.ccr.2010.06.005
  • N. Fiol, I. Villaescusa, Determination of sorbent point zero charge: usefulness in sorption studies, Environ. Chem. Lett. 7 (2009) 79–84.10.1007/s10311-008-0139-0