104
Views
2
CrossRef citations to date
0
Altmetric
Articles

Relationship between nitrogen transformation and its related genes: comparison among riparian, marsh, and full-scale constructed wetlands

, , , , , & show all
Pages 21806-21816 | Received 10 Jul 2015, Accepted 18 Nov 2015, Published online: 18 Dec 2015

References

  • K.R. Reddy, R.D. DeLaune, Biogeochemistry of Wetlands, CRC Press, Boca Raton, FL, 2008.10.1201/9780203491454
  • P.M. Mayer, Riparian Buffer Width, Vegetative Cover, and Nitrogen Removal Effectiveness, U.S. Environmental Protection Agency, Cincinnati, 2005.
  • J.H. Bai, J.J. Wang, D.H. Yan, H.F. Gao, R. Xiao, H.B. Shao, Q.Y. Ding, Spatial and temporal distributions of soil organic carbon and total nitrogen in two marsh wetlands with different flooding frequencies of the Yellow River delta, China, Clean: Soil, Air, Water 40 (2012) 1137–1144.
  • M. Sundaravadivel, S. Vigneswaran, Constructed wetlands for wastewater treatment, Crit. Rev. Environ. Sci. Technol. 31(4) (2001) 351–409.10.1080/20016491089253
  • B. Gribsholt, S. Boschker, E. Struyf, M. Andersson, A. Tramper, L. De Brabandere, S. Van Damme, N. Brion, P. Meire, F. Dehairs, Nitrogen processing in a tidal freshwater marsh: A whole-ecosystem 15 N labeling study, Limnol. Oceanogr. 50 (2005) 1945–1959.10.4319/lo.2005.50.6.1945
  • N. Flynn, P.J. Gardner, E. Maltby, The measurement and analysis of denitrification rates obtained using soil columns from river marginal wetlands, Soil Use Manage. 15 (1999) 150–156.
  • P.A. Bachand, A.J. Horne, Denitrification in constructed free-water surface wetlands: I. Very high nitrate removal rates in a macrocosm study, Ecol. Eng. 14 (1999) 9–15.10.1016/S0925-8574(99)00016-6
  • S. Wang, Y. Wang, X. Feng, L. Zhai, G. Zhu, Quantitative analyses of ammonia-oxidizing Archaea and bacteria in the sediments of four nitrogen-rich wetlands in China, Appl. Microbiol. Biotechnol. 90 (2011) 779–787.10.1007/s00253-011-3090-0
  • M. Wagner, G. Rath, H.P. Koops, J. Flood, R. Amann, In situ analysis of nitrifying bacteria in sewage treatment plants, Water Sci. Technol. 34 (1996) 237–244.10.1016/0273-1223(96)00514-8
  • S.K. Bastviken, P.G. Eriksson, A. Premrov, K. Tonderski, Potential denitrification in wetland sediments with different plant species detritus, Ecol. Eng. 25 (2005) 183–190.10.1016/j.ecoleng.2005.04.013
  • W.D. Tao, J. Wang, Effects of vegetation, limestone and aeration on nitritation, anammox and denitrification in wetland treatment systems, Ecol. Eng. 35 (2009) 836–842.10.1016/j.ecoleng.2008.12.003
  • H.Y. Chu, T. Fujii, S. Morimoto, X.G. Lin, K. Yagi, Population size and specific nitrification potential of soil ammonia-oxidizing bacteria under long-term fertilizer management, Soil Biol. Biochem. 40 (2008) 1960–1963.10.1016/j.soilbio.2008.01.006
  • G.Z. Sun, Y.F. Zhu, T. Saeed, G.X. Zhang, X.G. Lu, Nitrogen removal and microbial community profiles in six wetland columns receiving high ammonia load, Chem. Eng. J. 203 (2012) 326–332.10.1016/j.cej.2012.07.052
  • W. Zhi, G. Ji, Quantitative response relationships between nitrogen transformation rates and nitrogen functional genes in a tidal flow constructed wetland under C/N ratio constraints, Water Res. 64 (2014) 32–41.10.1016/j.watres.2014.06.035
  • W. Zhi, L. Yuan, G. Ji, C. He, Enhanced long-term nitrogen removal and its quantitative molecular mechanism in tidal flow constructed wetlands, Environ. Sci. Technol. 49 (2015) 4575–4583.10.1021/acs.est.5b00017
  • Y. Okano, K.R. Hristova, C.M. Leutenegger, L.E. Jackson, R.F. Denison, B. Gebreyesus, D. Lebauer, K.M. Scow, Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil, Appl. Environ. Microbiol. 70 (2004) 1008–1016.10.1128/AEM.70.2.1008-1016.2004
  • T. Dalsgaard, B. Thamdrup, Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments, Appl. Environ. Microbiol. 68 (2002) 3802–3808.10.1128/AEM.68.8.3802-3808.2002
  • M. Mazzarino, M. Bertiller, C. Sain, F. Laos, F. Coronato, Spatial patterns of nitrogen availability, mineralization, and immobilization in northern Patagonia, Argentina, Arid Land Res. Manage. 10 (1996) 295–309.
  • Federation, Water Environmental, and American Public Health Association, Standard Methods for the Examination of Water and Wastewater, American Public Health Association (APHA), Washington, DC, 2005.
  • S.C. Byers, E.L. Mills, P.L. Stewart, A comparison of methods of determining organic carbon in marine sediments, with suggestions for a standard method, Hydrobiologia 58 (1978) 43–47.10.1007/BF00018894
  • J. Ryan, G. Estefan, A. Rashid, Soil and Plant Analysis Laboratory Manual, ICARDA, Aleppo, 2007.
  • O. Højberg, J. Sørensen, Potential rates of ammonium oxidation, nitrite oxidation, nitrate reduction and denitrification in the young barley rhizosphere, Soil Biol. Biochem. 28 (1996) 47–54.10.1016/0038-0717(95)00119-0
  • K. Henriksen, T.H. Blackburn, Rates of nitrification, distribution of nitrifying bacteria, and nitrate fluxes in different types of sediment from Danish waters, Mar. Biol. 61 (1981) 299–304.10.1007/BF00401569
  • M. Trudell, R. Gillham, J. Cherry, An in-situ study of the occurrence and rate of denitrification in a shallow unconfined sand aquifer, J. Hydrol. 83 (1986) 251–268.10.1016/0022-1694(86)90155-1
  • K. Weier, J. Doran, J. Power, D. Walters, Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate, Soil Sci. Soc. Am. J. 57 (1993) 66–72.10.2136/sssaj1993.03615995005700010013x
  • S.C. Hart, J.M. Stark, E.A. Davidson, M.K. Firestone, Nitrogen mineralization, immobilization, and nitrification methods of soil analysis: Part 2—Microbiological and biochemical properties (1994) 985–1018.
  • T. Jin, T. Zhang, Q. Yan, Characterization and quantification of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in a nitrogen-removing reactor using T-RFLP and qPCR, Appl. Microbiol. Biotechnol. 87 (2010) 1167–1176.10.1007/s00253-010-2595-2
  • J.W. Gilliam, S. Dasberg, L.J. Lund, D.D. Focht, Denitrification in four California soils: Effect of soil profile characteristics, Soil Sci. Soc. Am. J. 42 (1978) 61–66.10.2136/sssaj1978.03615995004200010014x
  • D.R. Keeney, R.L. Chen, D.A. Graetz, Importance of denitrification and nitrate reduction in sediments to the nitrogen budgets of lakes, Nature 233 (1971) 66–67.10.1038/233066a0
  • J. Sorensen, Capacity for denitrification and reduction of nitrate to ammonia in a coastal marine sediment, Appl. Environ. Microbiol. 35 (1978) 301–305.
  • R. Lowrance, Groundwater nitrate and denitrification in a coastal plain riparian forest, J. Environ. Qual. 21 (1992) 401–405.10.2134/jeq1992.00472425002100030017x
  • K.R. Reddy, W.H. Patrick, Nitrogen transformations and loss in flooded soils and sediments, Crit. Rev. Env. Contr. 13 (1984) 273–309.10.1080/10643388409381709
  • P.M. Gale, K.R. Redely, D.A. Graetz, Nitrogen removal from reclaimed water applied to constructed and natural wetland microcosms, Water Environ. Res. 65 (1993) 162–168.10.2175/WER.65.2.9
  • D. Jenkinson, R. Fox, J. Rayner, Interactions between fertilizer nitrogen and soil nitrogen—The so-called ‘priming’ effect, J. Soil Sci. 36 (1985) 425–444.10.1111/ejs.1985.36.issue-3
  • I. Schmidt, O. Sliekers, M. Schmid, E. Bock, J. Fuerst, J.G. Kuenen, M.S. Jetten, M. Strous, New concepts of microbial treatment processes for the nitrogen removal in wastewater, FEMS Microbiol. Rev. 27 (2003) 481–492.10.1016/S0168-6445(03)00039-1
  • E. Kandeler, K. Deiglmayr, D. Tscherko, D. Bru, L. Philippot, Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland, Appl. Environ. Microbiol. 72 (2006) 5957–5962.10.1128/AEM.00439-06
  • J. Geets, M. de Cooman, L. Wittebolle, K. Heylen, B. Vanparys, P. De Vos, W. Verstraete, N. Boon, Real-time PCR assay for the simultaneous quantification of nitrifying and denitrifying bacteria in activated sludge, Appl. Microbiol. Biotechnol. 75 (2007) 211–221.10.1007/s00253-006-0805-8
  • D.V. Erler, L.A. Trott, D.M. Alongi, B.D. Eyre, Denitrification, anammox and nitrate reduction in sediments of the southern Great Barrier Reef lagoon, Mar. Ecol. Prog. Ser. 478 (2013) 57–70.10.3354/meps10040
  • G. Adam, H. Duncan, Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils, Soil Biol. Biochem. 33 (2001) 943–951.10.1016/S0038-0717(00)00244-3
  • L. Philippot, S. Hallin, Finding the missing link between diversity and activity using denitrifying bacteria as a model functional community, Curr. Opin. Microbiol. 8 (2005) 234–239.10.1016/j.mib.2005.04.003
  • A.O. Sliekers, S.C. Haaijer, M.H. Stafsnes, J.G. Kuenen, M.S. Jetten, Competition and coexistence of aerobic ammonium- and nitrite-oxidizing bacteria at low oxygen concentrations, Appl. Microbiol. Biotechnol. 68 (2005) 808–817.10.1007/s00253-005-1974-6
  • K. Chon, J.S. Chang, E. Lee, J. Lee, J. Ryu, J. Cho, Abundance of denitrifying genes coding for nitrate (narG), nitrite (nirS), and nitrous oxide (nosZ) reductases in estuarine versus wastewater effluent-fed constructed wetlands, Ecol. Eng. 37 (2011) 64–69.10.1016/j.ecoleng.2009.04.005
  • M. Strous, E. Van Gerven, J.G. Kuenen, M. Jetten, Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (anammox) sludge, Appl. Environ. Microbiol. 63 (1997) 2446–2448.
  • H.-P. Koops, A. Pommerening-Röser, Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species, FEMS Microbiol. Ecol. 37 (2001) 1–9.10.1111/fem.2001.37.issue-1
  • T.O. Strohm, B. Griffin, W.G. Zumft, B. Schink, Growth Yields in bacterial denitrification and nitrate ammonification, Appl. Environ. Microbiol. 73 (2007) 1420–1424.10.1128/AEM.02508-06
  • E.J. Dunne, K.R. Reddy, O.T. Carton, Nutrient Management in Agricultural Watersheds, Wageningen Academic Publications, Wageningen, 2005.10.3920/978-90-8686-558-1
  • S.K. Dodla, J.J. Wang, R.D. Delaune, R.L. Cook, Denitrification potential and its relation to organic carbon quality in three coastal wetland soils, Sci. Total Environ. 407 (2008) 471–480.10.1016/j.scitotenv.2008.08.022
  • C.C. Tanner, R.H. Kadlec, M.M. Gibbs, J.P.S. Sukias, M.L. Nguyen, Nitrogen processing gradients in subsurface-flow treatment wetlands—Influence of wastewater characteristics, Ecol. Eng. 18 (2002) 499–520.10.1016/S0925-8574(02)00011-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.