159
Views
6
CrossRef citations to date
0
Altmetric
Articles

Photocatalytic degradation of reactive red 3 and alachlor over uncalcined Fe–TiO2 synthesized via hydrothermal method

, , &
Pages 22017-22028 | Received 06 Mar 2015, Accepted 22 Nov 2015, Published online: 24 Dec 2015

References

  • K. Hashimoto, H. Irie, A. Fujishima, TiO2 photocatalysis: A historical overview and future prospects, Jpn. J. Appl. Phys. 44(12) (2005) 8269–8285.10.1143/JJAP.44.8269
  • Y. Wu, J. Zhang, L. Xiao, F. Chen, Properties of carbon and iron modified TiO2 photocatalyst synthesized at low temperature and photodegradation of acid orange 7 under visible light, Appl. Surf. Sci. 256 (2010) 4260–4268.10.1016/j.apsusc.2010.02.012
  • S. Artkla, K. Wantala, B. Srinameb, N. Grisdanurak, W. Klysubun, J. Wittayakun, Characteristics and photocatalytic degradation of methyl orange on Ti-RH-MCM-41 and TiO2/RH-MCM-41, Korean J. Chem. Eng. 26 (2009) 1556–1562.10.1007/s11814-009-0270-z
  • S. Liu, Y. Chen, Enhanced photocatalytic activity of TiO2 powders doped by Fe unevenly, Catal. Commun. 10 (2009) 894–899.10.1016/j.catcom.2008.12.028
  • E. Piera, Relationship concerning the nature and concentration of Fe(III) species on the surface of TiO2 particles and photocatalytic activity of the catalyst, Appl. Catal. B: Environ. 46 (2003) 671–685.10.1016/S0926-3373(03)00288-1
  • Z. Ambrus, N. Balázs, T. Alapi, G. Wittmann, P. Sipos, A. Dombi, et al., Synthesis, structure and photocatalytic properties of Fe(III)-doped TiO2 prepared from TiCl3, Appl. Catal. B: Environ. 81 (2008) 27–37.10.1016/j.apcatb.2007.11.041
  • C.A. Castro-López, A. Centeno, S.A. Giraldo, Fe-modified TiO2 photocatalysts for the oxidative degradation of recalcitrant water contaminants, Catal. Today 157 (2010) 119–124.10.1016/j.cattod.2010.04.050
  • Y. Wu, J. Zhang, L. Xiao, F. Chen, Preparation and characterization of TiO2 photocatalysts by Fe3+ doping together with Au deposition for the degradation of organic pollutants, Appl. Catal. B: Environ. 88 (2009) 525–532.10.1016/j.apcatb.2008.10.008
  • J. Zhu, J. Ren, Y. Huo, Z. Bian, H. Li, Nanocrystalline Fe/TiO2 visible photocatalyst with a mesoporous structure prepared via a nonhydrolytic sol–gel route, J. Phys. Chem. C 111 (2007) 18965–18969.10.1021/jp0751108
  • T.K. Ghorai, S.K. Biswas, P. Pramanik, Photooxidation of different organic dyes (RB, MO, TB, and BG) using Fe(III)-doped TiO2 nanophotocatalyst prepared by novel chemical method, Appl. Surf. Sci. 254 (2008) 7498–7504.10.1016/j.apsusc.2008.06.042
  • T. Tong, J. Zhang, B. Tian, F. Chen, D. He, Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation, J. Hazard. Mater. 155 (2008) 572–579.10.1016/j.jhazmat.2007.11.106
  • J.H. Jho, D.H. Kim, S.J. Kim, K.S. Lee, Synthesis and photocatalytic property of a mixture of anatase and rutile TiO2 doped with Fe by mechanical alloying process, J. Alloys Compd. 459 (2008) 386–389.10.1016/j.jallcom.2007.04.285
  • M.A. Khan, S.I. Woo, O.B. Yang, Hydrothermally stabilized Fe(III) doped titania active under visible light for water splitting reaction, Int. J. Hydrogen Energy 33 (2008) 5345–5351.10.1016/j.ijhydene.2008.07.119
  • M.S. Nahar, K. Hasegawa, S. Kagaya, Photocatalytic degradation of phenol by visible light-responsive iron-doped TiO2 and spontaneous sedimentation of the TiO2 particles, Chemosphere 65 (2006) 1976–1982.10.1016/j.chemosphere.2006.07.002
  • K. Wantala, L. Laokiat, P. Khemthong, N. Grisdanurak, K. Fukaya, Calcination temperature effect on solvothermal Fe–TiO2 and its performance under visible light irradiation, J. Taiwan Inst. Chem. Eng. 41 (2010) 612–616.10.1016/j.jtice.2010.01.008
  • K. Wantala, P. Khemthong, J. Wittayakun, N. Grisdanurak, Visible light-irradiated degradation of alachlor on Fe–TiO2 with assistance of H2O2, Korean J. Chem. Eng. 28 (2011) 2178–2183.10.1007/s11814-011-0095-4
  • K. Wantala, D. Tipayarom, L. Laokiat, N. Grisdanurak, Sonophotocatalytic activity of methyl orange over Fe(III)/TiO2, React. Kinet. Catal. Lett. 97 (2009) 249–254.10.1007/s11144-009-0045-x
  • M.D.G. de Luna, K.K.P. Rivera, T. Suwannaruang, K. Wantala, Alachlor photocatalytic degradation over uncalcined Fe–TiO2 loaded on granular activated carbon under UV and visible light irradiation, Desalin Water Treat. (2015), doi: 10.1080/19443994.2015.1011706.
  • C.A. Castro, A. Centeno, S.A. Giraldo, Iron promotion of the TiO2 photosensitization process towards the photocatalytic oxidation of azo dyes under solar-simulated light irradiation, Mater. Chem. Phys. 129 (2011) 1176–1183.10.1016/j.matchemphys.2011.05.082
  • M. Kang, Synthesis of Fe/TiO2 photocatalyst with nanometer size by solvothermal method and the effect of H2O addition on structural stability and photodecomposition of methanol, J. Mol. Catal. A: Chem. 197 (2003) 173–183.10.1016/S1381-1169(02)00586-1
  • R.J. Tayade, R.G. Kulkarni, R.V. Jasra, Transition metal ion impregnated mesoporous TiO2 for photocatalytic degradation of organic contaminants in water, Ind. Eng. Chem. Res. 45 (2006) 5231–5238.10.1021/ie051362o
  • L. Wen, B. Liu, X. Zhao, K. Nakata, T. Murakami, A. Fujishima, Synthesis, characterization, and photocatalysis of Fe-doped TiO2: A combined experimental and theoretical study, Int J Photoenergy 2012 (2012) 1–10, doi: 10.1155/2012/368750.
  • W.C. Oh, F.J. Zhang, Z. Meng, K. Zhang, Relative photonic properties of Fe/TiO2-nanocarbon catalysts for degradation of MB solution under visible light, Bull. Korean Chem. Soc. 31 (2010) 1128–1134.10.5012/bkcs.2010.31.5.1128
  • M.I. Litter, J.A. Navío, Photocatalytic properties of iron-doped titania semiconductors, J. Photochem. Photobiol., A 98 (1996) 171–181.10.1016/1010-6030(96)04343-2
  • M. Asiltürk, F. Sayılkan, E. Arpaç, Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation, J. Photochem. Photobiol., A 203 (2009) 64–71.10.1016/j.jphotochem.2008.12.021
  • K. Wantala, P. Sriprom, N. Pojananukij, A. Neramittagapong, S. Neramittagapong, P. Kasemsiri, Optimal decolorization efficiency of Reactive Red 3 by Fe-RH-MCM-41 catalytic wet oxidation coupled with Box–Behnken design, Key Eng. Mater. 545 (2013) 109–114.10.4028/www.scientific.net/KEM.545
  • E.S. Bireller, P. Aytar, S. Gedikli, A. Cabuk, Removal of some reactive dyes by untreated and pretreated saccharomyces cerevisiae, an alcohol fermentation waste, J. Sci. Ind. Res. India 71 (2012) 632–639.
  • S. Galassi, A. Provini, S. Mangiapan, E. Benfenati, Alachlor and its metabolites in surface water, Chemosphere 32 (1996) 229–237.10.1016/0045-6535(95)00335-5
  • C.W. Knapp, D.W. Graham, G. Berardesco, F. deNoyelles, B.J. Cutak, C.K. Larive, Nutrient level, microbial activity, and alachlor transformation in aerobic aquatic systems, Water Res. 37 (2003) 4761–4769.10.1016/j.watres.2003.08.012
  • T. Suwannaruang, K.K.P. Rivera, A. Neramittagapong, K. Wantala, Effects of hydrothermal temperature and time on uncalcined TiO2 synthesis for Reactive Red 120 photocatalytic degradation, Surf. Coat. Technol. 271 (2015) 192–200.
  • N.A. Jamalluddin, A.Z. Abdullah, Reactive dye degradation by combined Fe(III)/TiO2 catalyst and ultrasonic irradiation: Effect of Fe(III) loading and calcination temperature, Ultrason. Sonochem. 18 (2011) 669–678.10.1016/j.ultsonch.2010.09.004
  • C.J.E. Bajamundi, M.L.P. Dalida, K. Wantala, P. Khemthong, N. Grisdanurak, Effect of Fe3+ doping on the performance of TiO2 mechanocoated alumina bead photocatalysts, Korean J. Chem. Eng. 28 (2011) 1688–1692.10.1007/s11814-011-0031-7
  • Y.F. Li, W.P. Zhang, X. Li, Y. Yu, TiO2 nanoparticles with high ability for selective adsorption and photodegradation of textile dyes under visible light by feasible preparation, J. Phys. Chem. Solids 75 (2014) 86–93.10.1016/j.jpcs.2013.08.012
  • S.S. Shinde, C.H. Bhosale, K.Y. Rajpure, Photodegradation of organic pollutants using N-titanium oxide catalyst, J. Photochem. Photobiol. B 141 (2015) 186–191.
  • Y.-G. Kang, K.-H. Lee, H.-S. Hahm, Preparation of visible light sensitive nano-sized N-TiO2 photocatalysts and their photocatalytic activity under visible light, Turk. J. Chem. 39 (2015) 159–168.10.3906/kim-1407-49
  • N.J. Peill, L. Bourne, M.R. Hoffmann, Iron(III)-doped Q-sized TiO2 coatings in a fiber-optic cable photochemical reactor, J. Photochem. Photobiol., A 108 (1997) 221–228.10.1016/S1010-6030(97)00018-X
  • N. Wetchakun, K. Chiang, R. Amal, S. Phanichphant, Synthesis and characterization of transition metal ion doping on the photocatalytic activity of TiO2 nanoparticles, in: 2nd IEEE Int Nanoelectron Conf, 2008, pp. 43–47. Available from: <http://www.scopus.com/record/display.uri?eid=2-s2.0-52649172814&origin=resultslist&sort=plf-f&src=s&st1=Synthesis+and+characterization+of+transition+metal+ion+doping+on+the+photocatalytic+activity+of+TiO2+nanoparticles&st2=&sid=07A1B083CBE469E305655A4B67A8FCF1.aqHV0EoE4xlIF3hgVWgA%3a200&sot=b&sdt=b&sl=129&s=TITLE-ABS-KEY%28Synthesis+and+characterization+of+transition+metal+ion+doping+on+the+photocatalytic+activity+of+TiO2+nanoparticles%29&relpos=0&citeCnt=1&searchTerm=TITLE-ABS-KEY%28Synthesis+and+characterization+of+transition+metal+ion+doping+on+the+photocatalytic+activity+of+TiO2+nanoparticles%29>.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.