151
Views
16
CrossRef citations to date
0
Altmetric
Articles

Hydrothermal synthesis of NiO nanostructures for photodegradation of 4-nitrophenol

, , &
Pages 21982-21989 | Received 14 Apr 2015, Accepted 22 Nov 2015, Published online: 21 Dec 2015

References

  • M. Kulkarni, A. Chaudhari, Biodegradation of p-nitrophenol by P. putida, Bioresour. Technol. 97 (2006) 982–988.10.1016/j.biortech.2005.04.036
  • L. Zhu, B. Chen, Sorption behavior of p-nitrophenol on the interface BETWEEN anion−cation organobentonite and water, Environ. Sci. Technol. 34 (2000) 2997–3002.10.1021/es991460z
  • A. Walcarius, L. Mercier, Mesoporous organosilica adsorbents: Nanoengineered materials for removal of organic and inorganic pollutants, J. Mater. Chem. 20 (2010) 4478–4511.10.1039/b924316j
  • A. Zhang, N. Wang, J. Zhou, P. Jiang, G. Liu, Heterogeneous Fenton-like catalytic removal of p-nitrophenol in water using acid-activated fly ash, J. Hazard. Mater. 201–202 (2012) 68–73.10.1016/j.jhazmat.2011.11.033
  • J. Lee, J.C. Park, H. Song, A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol, Adv. Mater. 20 (2008) 1523–1528.10.1002/(ISSN)1521-4095
  • S. Safa, R. Azimirad, R. Hejazi, M. Rabbani, ZnO hierarchical nanostructures as a powerful photocatalyst for the degradation of p-nitrophenol, Chin. J. Phys. 52 (2014) 1612–1624.
  • G. Mele, E. Garcia-Lopez, L. Palmisano, G. Dyrda, R. Slota, Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with lanthanide double-decker phthalocyanine complexes, J. Phys. Chem. C 111 (2007) 6581–6588.10.1021/jp070529j
  • L. Yang, S. Luo, Y. Li, Y. Xiao, Q. Kang, Q. Cai, High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p–n heterojunction network catalyst, Environ. Sci. Technol. 44 (2010) 7641–7646.10.1021/es101711k
  • K.L. Dreher, Health and environmental impact of nanotechnology: Toxicological assessment of manufactured nanoparticles, Toxicol. Sci. 77 (2004) 3–5.
  • O. Akhavan, R. Azimirad, S. Safa, E. Hasani, CuO/Cu(OH)2 hierarchical nanostructures as bactericidal photocatalysts, J. Mater. Chem. 21 (2011) 9634–9640.10.1039/c0jm04364h
  • R. Azimirad, S. Safa, Photocatalytic and antifungal activity of flower-like copper oxide nanostructures, Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 44 (2014) 798–803.10.1080/15533174.2013.790440
  • O. Akhavan, M. Mehrabian, K. Mirabbaszadeh, R. Azimirad, Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria, J. Phys. D: Appl. Phys. 42 (2009) 225305.10.1088/0022-3727/42/22/225305
  • Y.-J. Hao, F.-T. Li, S.-S. Wang, M.-J. Chai, R.-H. Liu, X.-J. Wang, One-step combustion synthesis of β-Bi2O3-NiO/Ni composites and their visible light photocatalytic performance, Mater. Sci. Eng.: B 186 (2014) 41–47.10.1016/j.mseb.2014.03.007
  • F. Motahari, M.R. Mozdianfard, M. Salavati-Niasari, Synthesis and adsorption studies of NiO nanoparticles in the presence of H2acacen ligand, for removing Rhodamine B in wastewater treatment, Process Saf. Environ. Prot. 93 (2015) 282–292.10.1016/j.psep.2014.06.006
  • F.A. Harraz, R.M. Mohamed, A. Shawky, I.A. Ibrahim, Composition and phase control of Ni/NiO nanoparticles for photocatalytic degradation of EDTA, J. Alloys Compd. 508 (2010) 133–140.10.1016/j.jallcom.2010.08.027
  • M. Das, K.G. Bhattacharyya, Oxidation of Rhodamine B in aqueous medium in ambient conditions with raw and acid-activated MnO2, NiO, ZnO as catalysts, J. Mol. Catal. A: Chem. 391 (2014) 121–129.10.1016/j.molcata.2014.04.019
  • X. Zhang, W. Shi, J. Zhu, W. Zhao, J. Ma, S. Mhaisalkar, T. Maria, Y. Yang, H. Zhang, H. Hng, Q. Yan, Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes, Nano Res. 3 (2010) 643–652.10.1007/s12274-010-0024-6
  • B. Liu, H. Yang, H. Zhao, L. An, L. Zhang, R. Shi, L. Wang, L. Bao, Y. Chen, Synthesis and enhanced gas-sensing properties of ultralong NiO nanowires assembled with NiO nanocrystals, Sens. Actuators, B 156 (2011) 251–262.10.1016/j.snb.2011.04.028
  • S.A. Speakman, Basics of X-Ray powder diffraction, Massachusetts-USA, 2010. Available from: <http://prism.mit.edu/xray>.
  • O. Madelung, U. Rössler, M. Schulz, Non-Tetrahedrally Bonded Binary Compounds II, Springer, Verlag, Berlin, 2006.
  • X. Liu, L. Yu, Synthesis of nanosized nickel hydroxide by solid-state reaction at room temperature, Mater. Lett. 58 (2004) 1327–1330.10.1016/j.matlet.2003.09.054
  • S. Seo, M.J. Lee, D.H. Seo, E.J. Jeoung, D.-S. Suh, Y.S. Joung, I.K. Yoo, Reproducible resistance switching in polycrystalline NiO films, Appl. Phys. Lett. 85 (2004) 5655–5657.10.1063/1.1831560
  • R. Newman, R.M. Chrenko, Optical properties of nickel oxide, Phys. Rev. 114 (1959) 1507–1513.10.1103/PhysRev.114.1507
  • E. Kim, Z.-T. Jiang, K. No, Measurement and calculation of optical band gap of chromium aluminum oxide films, Jpn. J. Appl. Phys. 39 (2000) 4820–4825.10.1143/JJAP.39.4820
  • X. Song, L. Gao, Facile synthesis and hierarchical assembly of hollow nickel oxide architectures bearing enhanced photocatalytic properties, J. Phys. Chem. C 112 (2008) 15299–15305.10.1021/jp804921g
  • H. Li, Z. Bian, J. Zhu, D. Zhang, G. Li, Y. Huo, H. Li, Y. Lu, Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity, J. Am. Chem. Soc. 129 (2007) 8406–8407.10.1021/ja072191c
  • J. Pencer, F. Ross, Hallett, Effects of vesicle size and shape on static and dynamic light scattering measurements, Langmuir 19 (2003) 7488–7497.
  • A.C. Holland, G. Gagne, The scattering of polarized light by polydisperse systems of irregular particles, Appl. Opt. 9 (1970) 1113–1121.10.1364/AO.9.001113
  • N. Daneshvar, M.A. Behnajady, Y. Zorriyeh Asghar, Photooxidative degradation of 4-nitrophenol (4-NP) in UV/H2O2 process: Influence of operational parameters and reaction mechanism, J. Hazard. Mater. 139 (2007) 275–279.10.1016/j.jhazmat.2006.06.045
  • Y. Bessekhouad, D. Robert, J.V. Weber, Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant, J. Photochem. Photobiol., A 163 (2004) 569–580.10.1016/j.jphotochem.2004.02.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.