71
Views
18
CrossRef citations to date
0
Altmetric
Articles

Cu-doped ZnO nanoparticle for removal of reactive black 5: application of artificial neural networks and multiple linear regression for modeling and optimization

, , , &
Pages 22074-22080 | Received 27 Jul 2015, Accepted 01 Dec 2015, Published online: 28 Dec 2015

References

  • B. Subash, B. Krishnakumar, V. Pandiyan, M. Swaminathan, M. Shanthi, An efficient nanostructured Ag2S–ZnO for degradation of Acid Black 1 dye under day light illumination, Sep. Purif. Technol. 96 (2012) 204–213.10.1016/j.seppur.2012.06.002
  • H. Li, E. Xie, M. Qiao, X. Pan, Y. Zhang, Properties of indium-doped ZnO films prepared in an oxygen-rich plasma, J. Electron. Mater. 36 (2007) 1219–1223.10.1007/s11664-007-0136-2
  • A. Maleki, M. Safari, B. Shahmoradi, Y. Zandsalimi, H. Daraei, F. Gharibi, Photocatalytic degradation of humic substances in aqueous solution using Cu-doped ZnO nanoparticles under natural sunlight irradiation, Environ. Sci. Pollut. Res. 22 (2015) 16875–16880.10.1007/s11356-015-4915-7
  • S. Chakrabarti, B.K. Dutta, Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst, J. Hazard. Mater. 112 (2004) 269–278.10.1016/j.jhazmat.2004.05.013
  • R. Qiu, D. Zhang, Y. Mo, L. Song, E. Brewer, X. Huang, Photocatalytic activity of polymer-modified ZnO under visible light irradiation, J. Hazard. Mater. 156 (2008) 80–85.10.1016/j.jhazmat.2007.11.114
  • B. Shahmoradi, A. Maleki, K. Byrappa, Removal of disperse orange 25 using in situ surface modified Iron doped TiO2 nanoparticles, Desalin. Water Treat. 53 (2015) 3615–3622.10.1080/19443994.2013.873994
  • B. Shahmoradi, K. Namratha, K. Byrappa, K. Soga, S. Ananda, R. Somashekar, Enhancement of the photocatalytic activity of modified ZnO nanoparticles with manganese additive, Res. Chem. Intermed. 37 (2011) 329–340.10.1007/s11164-011-0255-5
  • R. Wang, J.H. Xin, Y. Yang, H. Liu, L. Xu, J. Hu, The characteristics and photocatalytic activities of silver doped ZnO nanocrystallites, Appl. Surf. Sci. 227 (2004) 312–317.10.1016/j.apsusc.2003.12.012
  • A. Rahmani, M. Zarrabi, M. Samarghandi, A. Afkhami, H. Ghaffari, Degradation of azo dye reactive black 5 and acid orange 7 by Fenton-like mechanism, Iran J. Chem. Eng. 7 (2010) 87–94.
  • A. Maleki, B. Shahmoradi, Solar degradation of Direct Blue 71 using surface modified iron doped ZnO hybrid nanomaterials, Water Sci. Technol. 65 (2012) 1923–1928.10.2166/wst.2012.091
  • B. Shahmoradi, M. Negahdary, A. Maleki, Hydrothermal synthesis of the surface-modified, manganese-doped TiO2 nanoparticles for photodegradation of methylene blue, Environ. Eng. Sci. 29 (2012) 1032–1037.10.1089/ees.2011.0519
  • E.S. Elmolla, M. Chaudhuri, M.M. Eltoukhy, The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process, J. Hazard. Mater. 179 (2010) 127–134.10.1016/j.jhazmat.2010.02.068
  • A. Khataee, M. Kasiri, Artificial neural networks modeling of contaminated water treatment processes by homogeneous and heterogeneous nanocatalysis, J. Mol. Catal. A: Chem. 331 (2010) 86–100.10.1016/j.molcata.2010.07.016
  • L. Paul, J. Samuel, N. Chandrasekaran, A. Mukherjee, Preparation and characterization of layer-by-layer coated nano metal oxides-polymer composite film using Taguchi design method for Cr(VI) removal, J. Environ. Chem. Eng. 2 (2014) 1937–1946.10.1016/j.jece.2014.08.018
  • F. Al-Momani, E. Touraud, J. Degorce-Dumas, J. Roussy, O. Thomas, Biodegradability enhancement of textile dyes and textile wastewater by VUV photolysis, J. Photochem. Photobiol., A: Chem. 153 (2002) 191–197.10.1016/S1010-6030(02)00298-8
  • H. Eskandari, M. Rezaee, M. Mohammadnia, Application of multiple regression and artificial neural network techniques to predict shear wave velocity from wireline log data for a carbonate reservoir South-West Iran, Can. Soc. Explor. Geophys. Record. 29 (2004) 42–48.
  • M.J. Lichaei, M. Nabi-Bidhendi, Comparison between multiple linear regression and artificial neural networks for porosity and permeability estimation, J. Geosci. 16 (2006) 140–149 (in Persian).
  • M. Ghaedi, N. Zeinali, A. Ghaedi, M. Teimuori, J. Tashkhourian, Artificial neural network-genetic algorithm based optimization for the adsorption of methylene blue and brilliant green from aqueous solution by graphite oxide nano particle, Spectrochim. Acta A. 125 (2014) 267–277.
  • S. Dutta, S.A. Parsons, C. Bhattacharjee, S. Bandhyopadhyay, S. Datta, Development of an artificial neural network model for adsorption and photocatalysis of reactive dye on TiO2 surface, Expert Syst. Appl. 37 (2010) 8634–8638.10.1016/j.eswa.2010.06.090
  • S. Aber, A. Amani-Ghadim, V. Mirzajani, Removal of Cr(VI) from polluted solutions by electrocoagulation: Modeling of experimental results using artificial neural network, J. Hazard. Mater. 171 (2009) 484–490.10.1016/j.jhazmat.2009.06.025
  • I. Kuzmanovski, S. Aleksovska, Optimization of artificial neural networks for prediction of the unit cell parameters in orthorhombic perovskites. Comparison with multiple linear regression, Chemom. Intell. Lab. Syst. 67 (2003) 167–174.10.1016/S0169-7439(03)00092-3
  • R. Noori, K. Ashrafi, A. Ajdarpour, Comparison of ANN and PCA based multivariate linear regression applied to predict the daily average concentration of CO: A case study of Tehran, Earth Space Phys. 34 (2008) 152–153 (in Persian).
  • A. Maleki, H. Daraei, F. Khodaei, K. Bayazid-Aghdam, R. Rezaee, A. Naghizadeh, Investigation of potato peel-based bio-sorbent efficiency in reactive dye removal: Artificial neural network modeling and genetic algorithms optimization, J. Adv. Environ. Health Res. 1 (2013) 21–28.
  • J. Kaur, S. Bansal, S. Singhal, Photocatalytic degradation of methyl orange using ZnO nanopowders synthesized via thermal decomposition of oxalate precursor method, Phys. B: Condens. Matter 416 (2013) 33–38.10.1016/j.physb.2013.02.005
  • M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, Visible light photocatalytic activity of Fe3+-doped ZnO nanoparticle prepared via sol–gel technique, Chemosphere 91 (2013) 1604–1611.10.1016/j.chemosphere.2012.12.055
  • M.C. Hill, Methods and Guidelines for Effective Model Calibration, US Geological Survey Denver, CO, USA, 1998.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.