180
Views
28
CrossRef citations to date
0
Altmetric
Articles

Adsorption kinetics and isotherms for the removal of nickel ions from aqueous solutions by an ion-exchange resin: application of two and three parameter isotherm models

, &
Pages 21925-21938 | Received 17 Oct 2014, Accepted 01 Dec 2015, Published online: 16 Feb 2016

References

  • R.F. Weiner, R. Matthews, Environmental Engineering, Butterworth-Heinemann, United Kingdom, 2003, p. 102.
  • Y. Bulut, Z. Tez, Removal of heavy metals from aqueous solution by sawdust adsorption, J. Environ. Sci. 19 (2007) 160–166.10.1016/S1001-0742(07)60026-6
  • M.N. Zafar, R. Nadeem, M.A. Hanif, Biosorption of nickel from protonated rice bran, J. Hazard. Mater. 143 (2007) 478–485.10.1016/j.jhazmat.2006.09.055
  • M. Cempel, G. Nikel, Nickel: A review of its sources and environmental toxicology, Polish J. Environ. Stud. 15 (2006) 375–382.
  • R.S. Dave, G.B. Dave, V.P. Mishra, Removal of nickel from electroplating wastewater by weakly basic chelating anion exchange resins: DOWEX 50x4, DOWEX 50x2 and DOWEX M-4195, J. Appl. Sci. Environ. Sanit. 6 (2011) 39–44.
  • K. Dermentzis, A. Christoforidis, E. Valsamidou, Removal of nickel, copper, zinc and chromium from synthetic and industrial wastewater by electrocoagulation, Int. J. Environ. Sci. 1 (2011) 697–710.
  • K. Trivunac, S. Stevanovic, Removal of heavy metal ions from water by complexation-assisted ultrafiltration, Chemosphere 64 (2006) 486–491.10.1016/j.chemosphere.2005.11.073
  • B.V. Tangahu, S.R.S. Abdullah, H. Basri, M. Idris, N. Anuar, M. Mukhlisin, A Review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation, Int. J. Chem. Eng. 15 (2011) 814–826.
  • W. Ma, P. Zong, Z. Cheng, B. Wang, B. Wang, Q. Sun, Adsorption and bio-sorption of nickel ions and reuse for 2-chlorophenol catalytic ozonation oxidation degradation from water, J. Hazard. Mater. 266 (2014) 19–25.10.1016/j.jhazmat.2013.12.007
  • F.A. Dawodu, K.G. Akpomie, Simultaneous adsorption of Ni(II) and Mn(II) ions from aqueous solution unto a Nigerian kaolinite clay, J. Mater. Res. Technol. 3 (2014) 129–141.10.1016/j.jmrt.2014.03.002
  • N. Gupta, A.K. Kushwaha, M.C. Chattopadhyaya, Adsorptive removal of Pb2+, Co2+ and Ni2+ by hydroxyapatite/chitosan composite from aqueous solution, J. Taiwan. Inst. Chem. E. 43 (2012) 125–131.
  • L.Y. Lee, X.J. Lee, P.C. Chia, K.W. Tan, S. Gan, Utilisation of Cymbopogon citratus (lemon grass) as biosorbent for the sequestration of nickel ions from aqueous solution: Equilibrium, kinetic, thermodynamics and mechanism studies, J. Taiwan Inst. Chem. Eng. 45 (2014) 1764–1772.10.1016/j.jtice.2014.02.002
  • R.M. Kulkarni, K.V. Shetty, G. Srinikethan, Cadmium (II) and nickel (II) biosorption by Bacillus laterosporus (MTCC 1628), J. Taiwan Inst. Chem. Eng. 45 (2014) 1628–1635.10.1016/j.jtice.2013.11.006
  • P.S. Kumar, S. Ramalingam, S.D. Kirupha, A. Murugesan, T. Vidhyadevi, S. Sivanesan, Adsorption behavior of nickel(II) onto cashew nut shell: Equilibrium, thermodynamics, kinetics, mechanism and process design, Chem. Eng. J. 167 (2011) 122–131.10.1016/j.cej.2010.12.010
  • M. El-Sadaawy, O. Abdelwahab, Adsorptive removal of nickel from aqueous solutions by activated carbons from doum seed (Hyphaenethebaica) coat Alexandria Eng. J. 53 (2014) 399–408
  • H. Hasar, Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from almond husk, J. Hazard. Mater. 97 (2003) 49–57.10.1016/S0304-3894(02)00237-6
  • A. Kurniawan, A.N. Kosasih, J. Febrianto, Y.-H. Ju, J. Sunarso, N. Indraswati, S. Ismadji, Evaluation of cassava peel waste as lowcost biosorbent for Ni-sorption: Equilibrium, kinetics, thermodynamics and mechanism, Chem. Eng. J. 172 (2011) 158–166.10.1016/j.cej.2011.05.083
  • D. Harikishore Kumar Reddy, D.K.V. Ramana, K. Seshaiah, A.V.R. Reddy, Biosorption of Ni(II) from aqueous phase by Moringa oleifera bark, a low cost biosorbent, Desalination 268 (2011) 150–157.
  • N.H. Shaidan, U. Eldemerdash, S. Awad, Removal of Ni(II) ions from aqueous solutions using fixed-bed ion exchange column technique, J. Taiwan Inst. Chem. Eng. 43 (2012) 40–45.10.1016/j.jtice.2011.06.006
  • M.E. Argun, Use of clinoptilolite for the removal of nickel ions from water: Kinetics and thermodynamics, J. Hazard. Mater. 150 (2008) 587–595.10.1016/j.jhazmat.2007.05.008
  • T. Mahmood, M.T. Saddique, A. Naeem, S. Mustafa, B. Dilara, Z.A. Raza, Cation exchange removal of Cd from aqueous solution by NiO, J. Hazard. Mater. 185 (2011) 824–828.10.1016/j.jhazmat.2010.09.094
  • K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J. 156 (2010) 2–10.10.1016/j.cej.2009.09.013
  • H.S. Ibrahim, T.S. Jamil, E.Z. Hegazy, Application of zeolite prepared from Egyptian kaolin for the removal of heavy metals: II. Isotherm models, J. Hazard. Mater. 182 (2010) 842–847.10.1016/j.jhazmat.2010.06.118
  • B. Alyüz, S. Veli, Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins, J. Hazard. Mater. 167 (2009) 482–488.10.1016/j.jhazmat.2009.01.006
  • M.M. Montazer-Rahmati, P.P. Rabbani, A. Abdolali, A.R. Keshtkar, Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae, J. Hazard. Mater. 185 (2011) 401–407.10.1016/j.jhazmat.2010.09.047
  • S. Malamisand, E. Katsou, A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: Examination of process parameters, kinetics and isotherms, J. Hazard. Mater. 252–253 (2013) 428–461.10.1016/j.jhazmat.2013.03.024
  • A. Deepatana, M. Valix, Comparative adsorption isotherms and modeling of nickel and cobalt citrate complexes onto chelating resins, Desalination 218 (2008) 334–342.10.1016/j.desal.2007.02.029
  • Y.S. Ho, J.F. Porter, G. McKay, Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: Copper, nickel and lead single component systems, Water Air Soil Pollut. 141 (2002) 1–33.10.1023/A:1021304828010
  • S. Rangabhashiyam, N. Anu, M.S.G. Nandagopal, N. Selvaraju, Relevance of isotherm models in biosorption of pollutants by agricultural byproducts, J. Environ. Chem. Eng. 2 (2014) 398–414.10.1016/j.jece.2014.01.014
  • K. Vijayaraghavan, T.V.N. Padmesh, K. Palanivelu, M. Velan, Biosorption of nickel(II) ions onto Sargassum wightii: Application of two-parameter and three-parameter isotherm models, J. Hazard. Mater. 133 (2006) 304–308.10.1016/j.jhazmat.2005.10.016
  • O. Hamdaoui, E. Naffrechoux, Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbonPart I. Two-parameter models and equations allowing determination of thermodynamic parameters, J. Hazard. Mater. 147 (2007) 381–394.10.1016/j.jhazmat.2007.01.021
  • Z. Benmaamar, A. Bengueddach, Correlation with different models for adsorption isotherms of m-xylene and toluene on zeolites, J. Appl. Sci. Environ. Sanit. 2 (2007) 43–56.
  • H. Qiu, L. LV, B. Pan, Q. Zhang, W. Zhang, Q. Zhang, Critical review in adsorption kinetic models, J. Zhejiang Univ. Sci. A, 10 (2009) 716–724.10.1631/jzus.A0820524
  • Z. Chen, W. Ma, M. Han, Biosorption of nickel and copper onto treated alga (Undaria pinnatifida): Application of isotherm and kinetic models, J. Hazard. Mater. 155 (2008) 327–333.10.1016/j.jhazmat.2007.11.064
  • S. Rengaraj, J.W. Yeon, Y. Kim, Y. Jung, Y. Ha, W.H. Kim, Adsorption characteristics of Cu(II) onto ion exchange resins 252H and 1500H: Kinetics, isotherms and error analysis, J. Hazard. Mater. 143 (2007) 469–477.10.1016/j.jhazmat.2006.09.064
  • E. Malkoc, Ni(II) removal from aqueous solutions using cone biomass of Thuja orientalis, J. Hazard. Mater. 137 (2006) 899–908.10.1016/j.jhazmat.2006.03.004
  • G. Rani, M. Harapriya, Microbial biomass: An economical alternative for removal of heavy metals from waste water, Indian J. Exp. Biol. 41 (2003) 945–966.
  • S. Rengaraj, C.K. Joo, Y. Kim, J. Yi, Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H, J. Hazard. Mater. 102 (2003) 257–275.10.1016/S0304-3894(03)00209-7
  • B.A. Fil, R. Boncukcuoglu, A.E. Yilmaz, S. Bayar, Adsorption kinetics and isotherms for the removal of zinc ions from aqueous solutions by an ion-exchange resin, J. Chem. Soc. Pak. 34 (2012) 841–848.
  • Z. Reddad, C. Gerente, Y. Andres, Pierre Le Cloirec, Adsorption of several metal ions onto a low -cost biosorbents: Kinetics, equilibrium studies, Environ. Sci. Technol. 36 (2002) 2067–2074.10.1021/es0102989
  • J. Vaghetti, E. Lima, B. Royer, J. Brasil, B. da Cunha, N. Simon, Application of Brazilian-pine fruit coat as a biosorbent for removal of Cr (VI) from aqueous solution-kinetic and equilibrium study, Biochem. Eng. J. 42 (2008) 67–76.10.1016/j.bej.2008.05.021
  • I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361–140310.1021/ja02242a004
  • K.R. Hall, L.C. Eagleton, A. Acrivos, T. Vermeulen, Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions, Ind. Eng. Chem. Fundam. 5 (1966) 212–223.10.1021/i160018a011
  • H.M. Freundlich, Over the adsorption in solution, Z. Phys Chem. 57 (1906) 385–470.
  • F. Slejko, Adsorption Technology: A Step by Step Approach to Process, Eva Appl Marcel Dekker, New York, NY, 1985.
  • Z. Chen, W. Ma, M. Han, Biosorption of nickel and copper onto treated alga (Undaria pinnatifida): Application of isotherm and kinetic models, J. Hazard. Mater. 155 (2008) 327–333.10.1016/j.jhazmat.2007.11.064
  • M. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted ion catalyst, Acta Physicochem. URSS 12 (1920) 217–222.
  • S.Y. Elovich, O.G. Larinov, Theory of adsorption from solutions of nonelectrolytes on solid (I) equation adsorption from solutions and the analysis of its simplest form, (II) verification of the equation of adsorption isotherm from solutions, Izv. Akad. Nauk. SSSR, Otd. Khim. Nauk. 2 (1962) 209–216
  • R.H. Fowler, E.A. Guggenheim, Statistical Thermodynamics, Cambridge University Press, London, 1939, pp. 431–450.
  • A.V. Kiselev, Vapor adsorption in the formation of adsorbate molecule complexes on the surface, Kolloid Zhur. 20 (1958) 338–348.
  • T.L. Hill, Statistical mechanics of multimolecular adsorption II. Localized and mobile adsorption and absorption, J. Chem. Phys. 14 (1946) 441.10.1063/1.1724166
  • J.H. de Boer, The Dynamical Character of Adsorption, Oxford University Press, Oxford, 1953.
  • D.S. Jovanovic, Physical adsorption of gases. I: Isotherms for monolayer and multilayer adsorption, Colloid. Polym. Sci. 235 (1969) 1203–1214.
  • A.V. Hill, The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves, J. Physiol. 40 (1910) 4–7.
  • L.K. Koopal, W.H. van Riemsdijk, J.C.M. de Wit, M.F. Benedetti, Analytical isotherm equation for multicomponent adsorption to heterogeneous surfaces, J. Colloid Interface Sci. 166 (1994) 51–60.10.1006/jcis.1994.1270
  • D. Ringot, B. Lerzy, K. Chaplain, J.P. Bonhoure, E. Auclair, Y. Larondelle, In vitro biosorption of ochratoxin A on the yeast industry by-products: Comparison of isotherm models, Bioresour. Technol. 98 (2007) 1812–1821.10.1016/j.biortech.2006.06.015
  • R.A. Koble, T.E. Corrigan, Adsorption isotherm for pure hydrocarbons, Ind. Eng. Chem. 44 (1952) 383–387.10.1021/ie50506a049
  • R. Han, J. Zhang, P. Han, Y. Wang, Z. Zhao, M. Tang, Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adsorption onto natural zeolite, Chem. Eng. J. 145 (2009) 496–504.10.1016/j.cej.2008.05.003
  • J.F. Porter, G. McKay, K.H. Choy, The prediction of sorption from a binary mixture of acidic dyes using single and mixed isotherm variants of the ideal adsorbed solute theory, Chem. Eng. Sci. 54 (1999) 5863–5885.
  • A. Kapoor, R.T. Yang, Correlation of equilibrium adsorption data of condensible vapours on porous adsorbents, Gas Sep. Purif. 3 (1989) 187–192.10.1016/0950-4214(89)80004-0
  • D.W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Ind. Appl. Math. 11 (1963) 431–441.10.1137/0111030
  • A. Seidel, D. Gelbin, On applying the ideal adsorbed solution theory to multicomponent adsorption equilibria of dissolved organic components on activated carbon, Chem. Eng. Sci. 43 (1988) 79–89.10.1016/0009-2509(88)87128-8
  • Y.S. Ho, G. McKay, Kinetic models for the sorption of dye from aqueous solution by wood, J. Environ. Sci. Health 76 (1998) 183–191.
  • Y.S. Ho, G. Mckay, The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat, Can. J. Chem. Eng. 76 (1998) 7–822.
  • M. Low, Kinetics of chemisorptions of gases on solids, Chem. Rev. 60 (1960) 267–312.10.1021/cr60205a003
  • M.H. Kalavathy, T. Karthikeyan, S. Rajgopal, L.R. Miranda, Kinetic and isotherm studies of Cu (II) adsorption onto H3PO4, J. Colloid Interface Sci. 292 (2005) 354–362.10.1016/j.jcis.2005.05.087
  • W.J. Weber Jr., J.C. Morriss, Kinetics of adsorption on carbon from solution, J. Sanitary Eng. 89 (1963) 31–60.
  • L.D. Michelson, P.G. Gideon. E.G. Pace, L.H. Kutal, US Department Industry, Office of Water Research and Technology, Bulletin, 74, 1975.
  • G.E. Boyd, A.W. Adamson, L.S. Myers, The exchange adsorption of ions from aqueous solutions by organic zeolites, II, Kinetics, J. Am. Chem. Soc. 69 (1947) 2836–2848.10.1021/ja01203a066

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.