106
Views
3
CrossRef citations to date
0
Altmetric
Articles

Study of fluid flow in grooved micro and nano-channels via dissipative particle dynamic: a tool for desalination membrane design

, &
Pages 11675-11684 | Received 16 Mar 2015, Accepted 07 Jan 2016, Published online: 18 Feb 2016

References

  • D. Cohen-Tanugi, J.F. Grossman, Water Desalination across Nanoporous Graphene, Nano Lett. 12 (2012) 3602–3608.
  • T. Humplik, J. Lee, S.C. O’hern, B.A. Fellman, M.A. Baig, S.F. Hassan, M.A. Atieh, Nanostructured materials for water desalination, Nanotechnology 22(29) (2011) 292001–292020.
  • T. Sochi, Slip at Fluid-Solid Interface, University College London, Department of Physics & Astronomy, London, 2011.
  • A. Niavarani, N.V. Priezjev, Modelling the combined effect of surface roughness and shear rate on slip flow of simple fluids, Phys. Rev. E 81 (2010) 011606 1–32.
  • J. Sun, Y.L. He, W.Q. Tao, J.W. Rose, H.S. Wang, Multi-scale study of liquid flow in micro/nanochannels: Effects of surface wettability and topology, Microfluid. Nanofluid. 12 (2012) 991–1008.
  • N.V. Priezjev, Interfacial friction between semiflexible polymers and crystalline surfaces, J. Chem. Phys 136 (2012) 224702 1–10.
  • W. Chen, R. Zhang, J. Koplik, Velocity slip on curved surfaces, Condens. Matter, 1 (2013) 1–5, axix.org/pdf/1309.1423v1.
  • I.V. Pivkin, G.E. Karniadakis, A new method to impose no-slip boundary conditions in dissipative particle dynamics, J. Comput. Phys. 207 (2005) 114–128.
  • A. Kumar, Y. Asako, E. Abu-Nada, M. Krafczyk, M. Faghri, From dissipative particle dynamics scales to physical scales: A coarse-graining study for water flow in microchannel, Microfluid. Nanofluid. 7 (2009) 467–477, doi: 10.1007/s10404-008-0398-x.
  • M. Revenga, I. Zúñiga, P. Español, Boundary conditions in dissipative particle dynamics, Comput. Phys. Commun. 121–122 (1999) 309–311, doi: 10.1016/S0010-4655(99)00341-0.
  • D. Kasiteropoulou, T. Karakasidis, A. Liakopoulos, A Dissipative Particle Dynamics study of flow in periodically grooved nanochannels, Int. J. Numer. Meth. Fl 68(9) (2011) 1156–1172.
  • D. Kasiteropoulou, T. Karakasidis, A. Liakopoulos, Mesoscopic simulation of fluid flow in periodically grooved microchannels, Comput. Fluids 74 (2013) 91–101.
  • S.C. Yang, Effects of surface roughness and interface wettability on nanoscale flow in a nanochannel, Microfluid. Nanofluid. 2 (2006) 501–511, doi: 10.1007/s10404-006-0096-5.
  • A. Jabbarzadeh, J.D. Atkinson, R.I. Tanner, Effect of the wall roughness on slip and rheological properties of hexadecane in molecular dynamics simulation of Couette shear flow between two sinusoidal walls, Phys. Rev. E 61 (2000) 690–699, doi: 10.1103/PhysRevE.61.690.
  • G.A. Amhalhel, P. Furmański, Problems of modeling flow and heat transfer in porous media, J. Power Technol. 85 (1997) 55–87.
  • V.K. Gupta, T.A. Saleh, Sorption of pollutants by porous carbon, carbon nanotubes and fullerene—An overview, Environ. Sci. Pollut. Res. 20 (2013) 2828–2843.
  • D. Cohen-Tanugi, J.C. Grossman, Water desalination across nanoporous graphene, Nano Lett. 12 (2012) 3602–3608.
  • J. Lee, T. Laoui, R. Karnik, Nanofluidic transport governed by the liquid/vapour interface, Nat. Nanotechnol. 9 (2014) 317–323.
  • D.A. Fedosov, I.V. Pivkin, G.E. Karniadakis, Velocity limit in DPD simulations of wall-bounded flows, J. Comput. Phys. 227 (2008) 2540–2559, doi: 10.1016/j.jcp.2007.11.009.
  • P. Español, P. Warren, Statistical mechanics of dissipative particle dynamics, Europhys. Lett. (EPL) 30 (1995) 191–196. doi: 10.1209/0295-5075/30/4/001.
  • R.D. Groot, P.B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation, J. Chem. Phys. 107 (1997) 4423–4435.
  • G. Karniadakis, A. Beskok, N. Aluru, Microflows and Nanoflows: Fundamentals and Simulation, Springer, New York, NY, 2002.
  • Y. Trofimov, Thermodynamic consistency in dissipative particle dynamics, Technische Universiteit Eindhoven, Ph.D. Thesis, 2003.
  • S.J. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys. 117 (1995) 1–19, doi: 10.1006/jcph.1995.1039.
  • G.F. Naterer, P.S. Glockner, D. Thiele, S. Chomokovski, G. Venn, G. Richardson, Surface micro-grooves for near-wall exergy and flow control: Application to aircraft intake de-icing, J. Micromech. Microeng. 15 (2005) 501–513, doi: 10.1088/0960-1317/15/3/010.
  • D. Kasiteropoulou, T. Karakasidis, A. Liakopoulos, Dissipative Particle Dynamics investigation of parameters affecting planar nanochannel flows, Mater. Sci. Eng. B 176(19) (2011) 1574–1579, doi: 10.1016/j.mseb.2011.01.023.
  • A. Liakopoulos, Fluid Mechanics (in greek), Tziolas Publications, Thessaloniki, 2011.
  • J.H. Irving, J.G. Kirkwood, The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics, J. Chem. Phys. 18 (1950) 817–830, doi: 10.1063/1.1747782.
  • X. Fan, N. Phan-Thien, N. Yong, X. Wu, D. Xu, Microchannel flow of a macromolecular suspension, Phys. Fluids 15(1) (2003) 11–21, doi: 10.1063/1.1522750.
  • I.V. Pivkin, G. Em. Karniadakis, Controlling density fluctuations in wall-bounded dissipative particle dynamics systems, Phys. Rev. Lett. 96 (2006) 206001.
  • T. Werder, J.H. Walther, P. Koumoutsakos, Hybrid atomistic–continuum method for the simulation of dense fluid flows, J. Comput. Phys. 205 (2005) 373–390.
  • Z. Li, Y.-H. Tang, H. Lei, B. Caswell, G. Karniadakis, Energy-conserving dissipative particle dynamics with temperature-dependent properties, J. Comput. Phys. 265 (2014) 113–127.
  • B.Y. Cao, Non-Maxwell slippage induced by surface roughness for microscale gas flow: A molecular dynamics simulation, Mol. Phys. 105(10) (2007) 1403–1410.
  • Z. Guo, T.S. Zhao, C. Xu, Y. Shi, Simulation of fluid flows in the nanometer: Kinetic approach and molecular dynamic simulation, Int. J. Comput. Fluid Dyn. 20(6) (2006) 361–367.
  • F.D. Sofos, T.E. Karakasidis, A. Liakopoulos, Effects of wall roughness on flow in nanochannels, Phys. Lett. E 79 (2009) 026305–1–7.
  • F. Sofos, T.E. Karakasidis, A. Liakopoulos, Non-equilibrium molecular dynamics investigation of parameters affecting planar nanochannel flows, Contemp. Eng. Sci. 2(6) (2009) 283–298.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.