94
Views
23
CrossRef citations to date
0
Altmetric
Articles

Experimental investigation of stability and transport of TiO2 nanoparticles in real soil columns

&
Pages 26196-26203 | Received 22 Nov 2015, Accepted 04 Mar 2016, Published online: 23 Mar 2016

References

  • Y.M. Jeon, S.K. Park, M.Y. Lee, Toxicoproteomic identification of TiO2 nanoparticle-induced protein expression changes in mouse brain, Anim. Cells Syst. 15 (2011) 107–114.
  • A. Rabajczyk, Possibilities for analysis of selected nanometals in solid environmental samples, Desalin. Water Treat. 57 (2016) 1598–1610.10.1080/19443994.2015.1030109
  • L. Jing, L. Dongmei, Y. Xiaonan, L. Haixing, L. Shiguang, T. Huan, Sedimentation of TiO2 nanoparticles in aqueous solutions: Influence of pH, ionic strength, and adsorption of humic acid, Desalin. Water Treat. (2015) 1–8, doi: 10.1080/19443994.2015.1092889.
  • G.G. Itzel, J.G.D. Christophe, P.K. Amid, B. Dorin, Deposition and release kinetics of nano-TiO2 in saturated porous media: Effects of solution ionic strength and surfactants, Environ. Pollut. 174 (2013) 106–113.
  • T.B. Moshe, I. Dror, Br. Berkowitz, Transport of metal oxide nanoparticles in saturated porous media, Chemosphere 81 (2010) 387–393.10.1016/j.chemosphere.2010.07.007
  • I. Chowdhury, Y. Hong, R.J. Honda, S.L. Walker, Mechanisms of TiO2 nanoparticle transport in porous media: Role of solution chemistry, nanoparticle concentration, and flowrate, J. Colloid Interface Sci. 360 (2011) 548–555.10.1016/j.jcis.2011.04.111
  • T. Xia, M. Kovochich, M. Liong, L. Mädler, B. Gilbert, H. Shi, J.I. Yeh, J.I. Zink, A.E. Nel, Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties, ACS Nano 2 (2008) 2121–2134.10.1021/nn800511k
  • T.C. Long, N. Saleh, R.D. Tilton, G.V. Lowry, B. Veronesi, Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): Implications for nanoparticle neurotoxicity, Environ. Sci. Technol. 40 (2006) 4346–4352.10.1021/es060589n
  • B. Trouiller, R. Reliene, A. Westbrook, P. Solaimani, R.H. Schiestl, Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice, Cancer Res. 69 (2009) 8784–8789.10.1158/0008-5472.CAN-09-2496
  • J. Fang, X.-Q. Shan, B. Wen, J.-M. Lin, G. Owens, Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns, Environ. Pollut. 157 (2009) 1101–1109.10.1016/j.envpol.2008.11.006
  • D.P. Jaisi, N.B. Saleh, R.E. Blake, M. Elimelech, Transport of single-walled carbon nanotubes in porous media: Filtration mechanisms and reversibility, Environ. Sci. Technol. 42 (2008) 8317–8323.10.1021/es801641v
  • I.G. Godinez, C.J.G. Darnault, Aggregation and transport of nano-TiO2 in saturated porous media: Effects of pH, surfactants and flow velocity, Water Res. 45 (2011) 839–851.10.1016/j.watres.2010.09.013
  • S. Fazio, J. Guzmán, M. Colomer, A. Salomoni, R. Moreno, Colloidal stability of nanosized titania aqueous suspensions, J. Eur. Ceram. Soc. 28 (2008) 2171–2176.10.1016/j.jeurceramsoc.2008.02.017
  • M.P. Finnegan, H.Z. Zhang, J.F. Banfield, Phase stability and transformation in titania nanoparticles in aqueous solutions dominated by surface energy, J. Phys. Chem. C 111 (2007) 1962–1968.10.1021/jp063822c
  • K. Fukushi, T. Sato, Using a surface complexation model to predict the nature and stability of nanoparticles, Environ. Sci. Technol. 39 (2005) 1250–1256.10.1021/es0491984
  • K.A.D. Guzman, M.P. Finnegan, J.F. Banfield, Influence of surface potential on aggregation and transport of titania nanoparticles, Environ. Sci. Technol. 40 (2006) 7688–7693.10.1021/es060847g
  • R.A. French, A.R. Jacobson, B. Kim, S.L. Isley, R.L. Penn, P.C. Baveye, Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles, Environ. Sci. Technol. 43 (2009) 1354–1359.10.1021/es802628n
  • K.L. Chen, M. Elimelech, Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions, J. Colloid Interface Sci. 309 (2007) 126–134.10.1016/j.jcis.2007.01.074
  • H. Hyung, J.D. Fortner, J.B. Hughes, J. Kim, Natural organic matter stabilizes carbon nanotubes in the aqueous phase, Environ. Sci. Technol. 41 (2007) 179–184.10.1021/es061817g
  • J.N. Ryan, M. Elimelech, Colloid mobilization and transport in groundwater, Colloids Surf., A 107 (1996) 1–56.10.1016/0927-7757(95)03384-X
  • T.K. Sen, K.C. Khilar, Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media, Adv. Colloid Interface Sci. 119 (2006) 71–96.
  • J. Zhuang, M. Flury, Y. Jin, Colloid-facilitated Cs transport through water-saturated Hanford sediment and Ottawa sand, Environ. Sci. Technol. 37 (2003) 4905–4911.10.1021/es0264504
  • H.F. Lecoanet, J. Bottero, M.R. Wiesner, Laboratory assessment of the mobility of nanomaterials in porous media, Environ. Sci. Technol. 38 (2004) 5164–5169.10.1021/es0352303
  • H.F. Lecoanet, M.R. Wiesner, Velocity effects on fullerene and oxide nanoparticle deposition in porous media, Environ. Sci. Technol. 38 (2004) 4377–4382.10.1021/es035354f
  • C. Reilly, Metal Contamination of Food, third ed., Blackwell Science, Oxford, 2002.10.1002/9780470995105
  • R. Kretzschmar, H. Sticher, Transport of humic-coated iron oxide colloids in a sandy soil: Influence of Ca2+ and trace metals, Environ. Sci. Technol. 31 (1997) 3497–3504.10.1021/es970244s
  • D.W. Nelson, L.E. Sommers, Total carbon, organic carbon and organic matter, in: D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnson, M.E. Sumne (Eds.), Methods of Soil Analysis. Part 3—Chemical Methods, Soil Sci. Soc. Am. J., Madison, WI, 1996, pp. 961–1010.
  • A.R. Morrisson, J.S. Park, B.L. Sharp, Application of high-performance size exclusion liquid chromatography to the study of copper speciation in waters extracted from sewage sludge treated soils, Analyst 115 (1990) 1429–1433.10.1039/an9901501429
  • M.R. Wiesner, G.V. Lowry, P. Alvarez, D. Dionysiou, P. Biswas, Assessing the risks of manufactured nanomaterials, Environ. Sci. Technol. 40 (2006) 4336–4345.10.1021/es062726m
  • C. Delolme, C. Hébrard-Labit, L. Spadini, J.P. Gaudet, Experimental study and modeling of the transfer of zinc in a low reactive sand column in the presence of acetate, J. Contam. Hydrol. 70 (2004) 205–224.10.1016/j.jconhyd.2003.09.002
  • N. Saleh, H.J. Kim, T. Phenrat, K. Matyjaszewski, R.D. Tilton, G.V. Lowry, Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns, Environ. Sci. Technol. 42 (2008) 3349–3355.10.1021/es071936b
  • B. Derjaguin, L. Landau, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes, Prog. Surf. Sci. 14 (1993) 733–762.
  • J. Fang, M.-j. Xu, D.-j. Wang, B. Wen, J.-y. Han, Modeling the transport of TiO2 nanoparticle aggregates in saturated and unsaturated granular media: Effects of ionic strength and pH, Water Res. 47 (2013) 1399–1408.10.1016/j.watres.2012.12.005
  • J.D. Hu, Y. Zevi, X.M. Kou, J. Xiao, X.J. Wang, Y. Jin, Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions, Sci. Total Environ. 408 (2010) 3477–3489.10.1016/j.scitotenv.2010.03.033
  • A.B.M. Giasuddin, S.R. Kanel, H. Choi, Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal, Environ. Sci. Technol. 41 (2007) 2022–2027.10.1021/es0616534
  • P. Yi, K.L. Chen, Influence of surface oxidation on the aggregation and deposition kinetics of multiwalled carbon nanotubes in monovalent and divalent electrolytes, Langmuir 27 (2011) 3588–3599.10.1021/la104682b
  • D. Bouchard, W. Zhang, T. Powell, U. Rattanaudompol, Aggregation kinetics and transport of single-walled carbon nanotubes at low surfactant concentrations, Environ. Sci. Technol. 46 (2012) 4458–4465.10.1021/es204618v
  • S.A. Bradford, S. Torkzaban, S.L. Walker, Coupling of physical and chemical mechanisms of colloid straining in saturated porous media, Water Res. 41 (2007) 3012–3024.10.1016/j.watres.2007.03.030
  • C. Ko, M. Elimelech, The “shadow effect” in colloid transport and deposition dynamics in granular porous media: Measurements and mechanisms, Environ. Sci. Technol. 34 (2000) 3681–3689.10.1021/es0009323
  • N. Tufenkji, M. Elimelech, Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media, Environ. Sci. Technol. 38 (2004a) 529–536.10.1021/es034049r
  • J. Zhuang, J. Qi, Y. Jin, Retention and transport of amphiphilic colloids under unsaturated flow conditions: Effect of particle size and surface property, Environ. Sci. Technol. 39 (2005) 7853–7859.10.1021/es050265j

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.