365
Views
23
CrossRef citations to date
0
Altmetric
Articles

Sequent-based logical argumentation

&
Pages 73-99 | Received 14 May 2014, Accepted 19 Dec 2014, Published online: 22 Jan 2015

References

  • Amgoud L., & Besnard P. (2009). Bridging the gap between abstract argumentation systems and logic. Proc. SUM'09, LNCS, Vol. 5785. Heidelberg: Springer, pp. 12–27.
  • Amgoud L., & Besnard P. (2010). A formal analysis of logic-based argumentation systems. Proc. SUM'10, LNCS, Vol. 6379. Heidelberg: Springer, pp. 42–55.
  • Aqvist L. (2002). Deontic logic. In D. M. Gabbay and F. Guenthner (Eds.), Handbook of philosophical logic (Vol. 8, pp. 147–264). Dordrecht: Kluwer.
  • Arieli O. (2013). A sequent-based representation of logical argumentation. Proc. CLIMA'13, LNCS, Vol. 8143. Heidelberg: Springer, pp. 69–85.
  • Arieli O., & Straßer C. (2014). Dynamic derivations for sequent-based deductive argumentation. Proc. COMMA'14, Frontiers in artificial intelligence and applications, Vol. 266, IOS Press, pp. 89–100.
  • Avron A. (1987). A constructive analysis of RM. Journal of Symbolic Logic, 52, 939–951. doi: 10.2307/2273828
  • Avron A. (2014). What is relevance logic? Annals of Pure and Appied Logic, 165, 26–48. doi: 10.1016/j.apal.2013.07.004
  • Batens D. (2007). A universal logic approach to adaptive logics. Logica Universalis, 1, 221–242. doi: 10.1007/s11787-006-0012-5
  • Belnap N. D. (1977). A useful four-valued logic. In M. Dunn and G. Epstein (Eds.), Modern uses of multiple-valued logics (pp. 7–37). Dordrecht: Reidel Publishing.
  • Besnard P., Grégoire É., Piette C., & Raddaoui B. (2010). MUS-based generation of arguments and counter-arguments. Proc. IRI'10, IEEE, pp. 239–244.
  • Besnard P., & Hunter A. (2001). A logic-based theory of deductive arguments. Artificial Intelligence, 128, 203–235. doi: 10.1016/S0004-3702(01)00071-6
  • Besnard P., & Hunter A. (2009). Argumentation based on classical logic. In I. Rahwan and G. R. Simari (Eds.), Argumentation in artificial intelligence (pp. 133–152). Dordrecht: Springer.
  • Brewka G. (2001). Dynamic argument systems: A formal model of argumentation processes based on situation calculus. Journal of Logic and Computation, 11, 257–282. doi: 10.1093/logcom/11.2.257
  • Brünnler K. (2010). Nested sequents (PhD thesis). University of Bern.
  • Caminada M.W.A. (2006). Semi-stable semantics. Proc. COMMA'06, IOS Press, pp. 121–130.
  • Caminada M.W.A. (2007). Comparing two unique extension semantics for formal argumentation: ideal and eager. Proc. BNAIC'07, 81–87.
  • Caminada M.W.A., & Amgoud L. (2007). On the evaluation of argumentation formalisms. Artificial Intelligence, 171, 286–310. doi: 10.1016/j.artint.2007.02.003
  • Caminada M.W.A., Carnielli W.A., & Dunne P.E. (2012). Semi-stable semantics. Journal of Logic and Computation, 22, 1207–1254. doi: 10.1093/logcom/exr033
  • Chesñevar C.I., Maguitman A.G., & Loui R.P. (2000). Logical models of argument. ACM Computing Surveys, 32, 337–383. doi: 10.1145/371578.371581
  • da Costa N.C.A. (1974). On the theory of inconsistent formal systems. Notre Dame Journal of Formal Logic, 15, 497–510. doi: 10.1305/ndjfl/1093891487
  • Dung P.M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77, 321–357. doi: 10.1016/0004-3702(94)00041-X
  • Dung P.M., Kowalski R., & Toni F. (2006). Dialectic proof procedures for assumption-based, admissible argumentation. Artificial Intelligence, 170, 114–159. doi: 10.1016/j.artint.2005.07.002
  • Dung P.M., Mancarella P., & Toni F. (2007). Computing ideal sceptical argumentation. Artificial Intelligence, 171, 642–674. doi: 10.1016/j.artint.2007.05.003
  • Dunn J.M., & Restall G. (2002). Relevance logic. In D. Gabbay & F. Guenther (Eds.), Handbook of philosophical logic (Vol. 6, pp. 1–136). Dordrecht: Kluwer.
  • Efstathiou V., & Hunter A. (2011). Algorithms for generating arguments and counterarguments in propositional logic. International Journal of Approximate Reasoning, 52, 672–704. doi: 10.1016/j.ijar.2011.01.005
  • Eiter T., & Gottlob G. (1995). The complexity of logic-based abduction. ACM Journal, 42, 3–42. doi: 10.1145/200836.200838
  • Gentzen G., Investigations into logical deduction. In German. An English translation appears in ‘The collected works of Gerhard Gentzen’, edited by M.E. Szabo, North-Holland, 1969. (1934).
  • Gorogiannis N., & Hunter A. (2011). Instantiating abstract argumentation with classical logic arguments: Postulates and properties. Artificial Intelligence, 175, 1479–1497. doi: 10.1016/j.artint.2010.12.003
  • Governatori G., Maher M.J., Antoniou G., & Billington D. (2004). Argumentation semantics for defeasible logic. Journal of Logic and Computation, 14, 675–702. doi: 10.1093/logcom/14.5.675
  • Horty J.F. (1994). Moral dilemmas and nonmonotonic logic. Journal of Philosiphical Logic, 23, 35–65. doi: 10.1007/BF01417957
  • Łos J., & Suzsko R. (1958). Remarks on sentential logics. Indagationes Mathematicae, 20, 177–183.
  • Modgil S., & Prakken H. (2013). A general account of argumentation with preferences. Artificial Intelligence, 195, 361–397. doi: 10.1016/j.artint.2012.10.008
  • Modgil S., & Prakken H. (2014). The ASPIC+ framework for structured argumentation: A tutorial. Argument and Computation, 5, 31–62. doi: 10.1080/19462166.2013.869766
  • Pollock J.L. (1987). Defeasible reasoning. Cognitive Science, 11, 481–518. doi: 10.1207/s15516709cog1104_4
  • Pollock J.L. (1991). A theory of defeasible reasoning. International Journal of Intelligent Systems, 6, 33–54. doi: 10.1002/int.4550060103
  • Pollock J.L. (1992). How to reason defeasibly. Artificial Intelligence, 57, 1–42. doi: 10.1016/0004-3702(92)90103-5
  • Pollock J. (1995). Cognitive carpentry. A blueprint for how to build a person. Cambridge, MA: MIT Press.
  • Prakken H. (1993). An argumentation framework in default logic. Annals of Mathematics and Artificial Intelligence, 9, 93–132. doi: 10.1007/BF01531263
  • Prakken H. (1996). Two approaches to the formalisation of defeasible deontic reasoning. Studia Logica, 57, 73–90. doi: 10.1007/BF00370670
  • Prakken H. (2010). An abstract framework for argumentation with structured arguments. Argument and Computation, 1, 93–124. doi: 10.1080/19462160903564592
  • Prakken H., & Vreeswijk G. (2002). Logical systems for defeasible argumentation. In D. Gabbay and F. Guenthner (Eds.), Handbook of philosophical logic (Vol. 4, pp. 219–318). Dordrecht: Kluwer.
  • Priest G. (1989). Reasoning about truth. Artificial Intelligence, 39, 231–244. doi: 10.1016/0004-3702(89)90027-1
  • Simari G.R., & Loui R.P. (1992). A mathematical treatment of defeasible reasoning and its implementation. Artificial Intelligence, 53, 125–157. doi: 10.1016/0004-3702(92)90069-A
  • Stolpe A. (2010). A theory of permission based on the notion of derogation. Journal of Applied Logic, 8, 97–113. doi: 10.1016/j.jal.2010.01.001
  • Straßer C. (2014). Adaptive logics for defeasible reasoning. Applications in argumentation, normative reasoning and default reasoning. Heidelberg: Springer.
  • Straßer C., & Arieli O. (2014). Sequent-based argumentation for normative reasoning. Proc. DEON'14, LNAI, Vol. 8554. Heidelberg: Springer, pp. 224–240.
  • Urquhart A. (2001). Many-valued logic. In D. Gabbay and F. Guenthner (Eds.), Handbook of philosophical logic (Vol. II, pp. 249–295). Dordrecht: Kluwer.
  • Wu Y. (2012). Between argument and conclusion. Argument-based approaches to discussion, inference and uncertainty (PhD thesis). University of Luxembourg.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.