1,815
Views
1
CrossRef citations to date
0
Altmetric
Statistical Innovation in Healthcare: Celebrating the Past 40 Years and Looking Toward the Future - Special issue for the 2021 Regulatory-Industry Statistics Workshop

Power and Sample Size Calculations for the Restricted Mean Time Analysis of Prioritized Composite Endpoints

ORCID Icon
Pages 540-548 | Received 23 Dec 2021, Accepted 25 Jul 2022, Published online: 03 Oct 2022

References

  • Akacha, M., Bretz, F., Ohlssen, D., Rosenkranz, G., and Schmidli, H. (2017), “Estimands and their Role in Clinical Trials,” Statistics in Biopharmaceutical Research, 9, 268–271. DOI: 10.1080/19466315.2017.1302358.
  • Akacha, M., Bretz, F., and Ruberg, S. (2017), “Estimands in Clinical Trials–Broadening the Perspective,” Statistics in Medicine, 36, 5–19. DOI: 10.1002/sim.7033.
  • Anker, S. D., and McMurray, J. V. (2012), “Time to Move on from “Time-to-First”: Should All Events be Included in the Analysis of Clinical Trials,” European Heart Journal, 33, 2764–2765.
  • Bebu, I., and Lachin, J. M. (2016), “Large Sample Inference for a Win Ratio Analysis of a Composite Outcome Based on Prioritized Components,” Biostatistics, 17, 178–187. DOI: 10.1093/biostatistics/kxv032.
  • Buyse, M. (2010), “Generalized Pairwise Comparisons of Prioritized Outcomes in the Two-sample Problem,” Statistics in Medicine, 29, 3245–3257. DOI: 10.1002/sim.3923.
  • Chu, K. C., Tarone, R. E., Kessler, L. G., Ries, L. A., Hankey, B. F., Miller, B. A., and Edwards, B. K. (1996), “Recent Trends in US Breast Cancer Incidence, Survival, and Mortality Rates,” JNCI: Journal of the National Cancer Institute, 88, 1571–1579. DOI: 10.1093/jnci/88.21.1571.
  • Clayton, D. G. (1978), “A Model for Association in Bivariate Life Tables and its Application in Epidemiological Studies of Familial Tendency in Chronic Disease Incidence,” Biometrika, 65, 141–151. DOI: 10.1093/biomet/65.1.141.
  • Conner, S. C., and Trinquart, L. (2021), “Estimation and Modeling of the Restricted Mean Time Lost in the Presence of Competing Risks,” Statistics in Medicine, 40, 2177–2196. DOI: 10.1002/sim.8896.
  • Dong, G., Huang, B., Chang, Y.-W., Seifu, Y., Song, J., and Hoaglin, D. C. (2020), “The Win Ratio: Impact of Censoring and Follow-up Time and Use with Nonproportional Hazards,” Pharmaceutical Statistics, 19, 168–177. DOI: 10.1002/pst.1977.
  • Eaton, A., Therneau, T., and Le-Rademacher, J. (2020), “Designing Clinical Trials with (Restricted) Mean Survival Time Endpoint: Practical Considerations,” Clinical Trials, 17, 285–294. DOI: 10.1177/1740774520905563.
  • Fleming, T. R., and Harrington, D. P. (1991), Counting Processes and Survival Analysis, Hoboken, NJ: Wiley.
  • Freemantle, N., Calvert, M., Wood, J., Eastaugh, J., and Griffin, C. (2003), “Composite Outcomes in Randomized Trials: Greater Precision but With Greater Uncertainty,” Journal of the American Medical Association, 289, 2554–2559. DOI: 10.1001/jama.289.19.2554.
  • Hoeffding, W. (1948), “A Class of Statistics With Asymptotically Normal Distributions,” Annals of Mathematical Statistics, 19, 293–325. DOI: 10.1214/aoms/1177730196.
  • ICH. (2020), ICH E9 (R1) Addendum on Estimands and Sensitivity Analysis in Clinical Trials to the Guideline on Statistical Principles for Clinical Trials, Step 5, London: European Medicines Evaluation Agency. Accessed November 29, 2019.
  • Jennison, C., and Turnbull, B. W. (1999), Group Sequential Methods with Applications to Clinical Trials, Boca Raton, FL: Chapman & Hall/CRC.
  • Lin, D. Y., Wei, L.-J., Yang, I., and Ying, Z. (2000), “Semiparametric Regression for the Mean and Rate Functions of Recurrent Events,” Journal of the Royal Statistical Society, Series B, 62, 711–730. DOI: 10.1111/1467-9868.00259.
  • Lu, Y., and Tian, L. (2021), “Statistical Considerations for Sequential Analysis of the Restricted Mean Survival Time for Randomized Clinical Trials,” Statistics in Biopharmaceutical Research, 13, 210–218. DOI: 10.1080/19466315.2020.1816491.
  • Luo, X., Huang, B., and Quan, H. (2019), “Design and Monitoring of Survival Trials based on Restricted Mean Survival Times,” Clinical Trials, 16, 616–625. DOI: 10.1177/1740774519871447.
  • Luo, X., Tian, H., Mohanty, S., and Tsai, W. Y. (2015), “An Alternative Approach to Confidence Interval Estimation for the Win Ratio Statistic,” Biometrics, 71, 139–145. DOI: 10.1111/biom.12225.
  • Mao, L. (2019), “On the Alternative Hypotheses for the Win Ratio,” Biometrics, 75, 347–351. DOI: 10.1111/biom.12954.
  • Mao, L. (2021), “On Restricted Mean Time in Favor of Treatment,” Biometrics. DOI: 10.1111/biom.13570..
  • Mao, L., and Kim, K. (2021), “Statistical Models for Composite Endpoints of Death and Non-fatal Events: A Review,” Statistics in Biopharmaceutical Research, 13, 260–269. DOI: 10.1080/19466315.2021.1927824.
  • Mao, L., Kim, K., and Li, Y. (2022), “On Recurrent-Event Win Ratio,” Statistical Methods in Medical Research, 31, 1120–1134. DOI: 10.1177/09622802221084134.
  • Mao, L., Kim, K., and Miao, X. (2021), “Sample Size Formula for General win Ratio Analysis,” Biometrics. DOI: 10.1111/biom.13501..
  • McCaw, Z. R., Yin, G., and Wei, L.-J. (2019), “Using the Restricted Mean Survival Time Difference as an Alternative to the Hazard Ratio for Analyzing Clinical Cardiovascular Studies,” Circulation, 140, 1366–1368. DOI: 10.1161/CIRCULATIONAHA.119.040680.
  • Nelsen, R. B. (2007), An Introduction to Copulas, New York: Springer.
  • Oakes, D. (1989), “Bivariate Survival Models Induced by Frailties,” Journal of the American Statistical Association, 84, 487–493. DOI: 10.1080/01621459.1989.10478795.
  • Oakes, D (2016), “On the Win-Ratio Statistic in Clinical Trials With Multiple Types of Event,” Biometrika, 103, 742–745.
  • Pocock, S., Ariti, C., Collier, T., and Wang, D. (2012), “The Win Ratio: A New Approach to the Analysis of Composite Endpoints in Clinical Trials Based on Clinical Priorities,” European Heart Journal, 33, 176–182. DOI: 10.1093/eurheartj/ehr352.
  • Rogers, J. K., Pocock, S. J., McMurray, J. J., Granger, C. B., Michelson, E. L., Östergren, J., Pfeffer, M. A., Solomon, S. D., Swedberg, K., and Yusuf, S. (2014), “Analysing Recurrent Hospitalizations in Heart Failure: A Review of Statistical Methodology, With Application to CHARM-Preserved,” European Journal of Heart Failure, 16, 33–40. DOI: 10.1002/ejhf.29.
  • Royston, P., and Parmar, M. K. (2011), “The Use of Restricted Mean Survival Time to Estimate the Treatment Effect in Randomized Clinical Trials when the Proportional Hazards Assumption is in Doubt,” Statistics in Medicine, 30, 2409–2421. DOI: 10.1002/sim.4274.
  • Royston, P., and Parmar, M. K. (2013), “Restricted Mean Survival Time: An Alternative to the Hazard Ratio for the Design and Analysis of Randomized Trials with a Time-to-Event Outcome,” BMC Medical Research Methodology, 13, 152.
  • Sauerbrei, W., and Royston, P. (1999), “Building Multivariable Prognostic and Diagnostic Models: Transformation of the Predictors by using Fractional Polynomials,” Journal of the Royal Statistical Society, Series A, 162, 71–94. DOI: 10.1111/1467-985X.00122.
  • Schmoor, C., Olschewski, M., and Schumacher, M. (1996), “Randomized and Non-randomized Patients in Clinical Trials: Experiences with Comprehensive Cohort Studies,” Statistics in Medicine, 15, 263–271. DOI: 10.1002/(SICI)1097-0258(19960215)15:3<263::AID-SIM165>3.0.CO;2-K.
  • Tian, L., Fu, H., Ruberg, S. J., Uno, H., and Wei, L.-J. (2018), “Efficiency of Two Sample Tests via the Restricted Mean Survival Time for Analyzing Event Time Observations,” Biometrics, 74, 694–702. DOI: 10.1111/biom.12770.
  • Tsiatis, A. (2006), Semiparametric Theory and Missing Data, New York: Springer.
  • Uno, H., Claggett, B., Tian, L., Inoue, E., Gallo, P., Miyata, T., Schrag, D., Takeuchi, M., Uyama, Y., Zhao, L., Skali, H., Solomon, S., Jacobus, S., Hughes, M., Packer, M., and Wei, L.-J. (2014), “Moving Beyond the Hazard Ratio in Quantifying the between-Group Difference in Survival Analysis,” Journal of Clinical Oncology, 32, 2380–2385. DOI: 10.1200/JCO.2014.55.2208.
  • van der Vaart, A. W. (1998), Asymptotic Statistics, Cambridge: Cambridge University Press.
  • Vardeny, O., Kim, K., Udell, J. A., Joseph, J., Desai, A. S., Farkouh, M. E., Hegde, S. M., Hernandez, A. F., McGeer, A., Talbot, H. K., Anand, I., Bhatt, D. L., Cannon, C. P., DeMets, D., Michael Gaziano, J., Goodman, S. G., Nichol, K., Tattersall, M. C., Temte, J. L., Wittes, J., Yancy, C., Claggett, B., Chen, Y., Mao, L., Havighurst, T. C., Cooper, L. S., Solomon, S. D., and INVESTED Committees and Investigators. (2021), “Effect of High-Dose Trivalent vs Standard-Dose Quadrivalent Influenza Vaccine on Mortality or Cardiopulmonary Hospitalization in Patients with High-Risk Cardiovascular Disease: A Randomized Clinical Trial,” JAMA, 325, 39–49. DOI: 10.1001/jama.2020.23649.
  • Wei, L.-J., Lin, D. Y., and Weissfeld, L. (1989), “Regression Analysis of Multivariate Incomplete Failure Time Data by Modeling Marginal Distributions,” Journal of the American Statistical Association, 84, 1065–1073. DOI: 10.1080/01621459.1989.10478873.
  • Yung, G., and Liu, Y. (2020), “Sample Size and Power for the Weighted Log-rank Test and Kaplan-Meier based Tests With Allowance for Nonproportional Hazards,” Biometrics, 76, 939–950. DOI: 10.1111/biom.13196.