985
Views
3
CrossRef citations to date
0
Altmetric
Articles

Size dependence of twin formation energy of metallic nanowires

, &
Pages 112-118 | Received 01 Jun 2012, Accepted 02 Sep 2012, Published online: 01 Oct 2012

References

  • Lu , L. , Shen , Y.F. , Chen , X.H. , Qian , L. and Lu , K. 2004 . Ultrahigh strength and high electrical conductivity in copper . Science , 304 : 422 – 426 .
  • Shim , H.W. , Zhang , Y.F. and Huang , H.C. 2008 . Twin formation during SiC nanowire synthesis . J. Appl. Phys , 104 : 063511
  • Park , H.S. , Gall , K. and Zimmerman , J.A. 2005 . Shape memory and pseudoelasticity in metal nanowires . Phys. Rev. Lett , 95 : 255504
  • Liang , W. and Zhou , M. 2005 . Shape memory effect in Cu nanowire . Nano Lett , 5 : 2039 – 2043 .
  • Zhang , Y.F. and Huang , H.C. 2010 . Controllable introduction of twin boundaries into nanowires . J. Appl. Phys , 108 : 103507
  • Huang , H.C. 2011 . Twin boundaries in nanowires – Controllable introduction . JOM , 63 : 58 – 61 .
  • Park , H.S. , Gall , K. and Zimmerman , J.A. 2006 . Deformation of FCC nanowires by twinning and slip . J. Mech. Phys. Solids , 54 : 1862 – 1881 .
  • Zhong , S. , Koch , T. , Wang , M. , Scherer , T. , Walheim , S. , Hahn , H. and Schimmel , T. 2009 . Nanoscale twinned copper nanowire formation by direct electrodeposition . Small , 5 : 2265 – 2270 .
  • Tian , M. , Wang , J. , Kurtz , J. , Mallouk , T.E. and Chan , M.H.W. 2003 . Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism . Nano Lett , 3 : 919 – 923 .
  • Zhang , Y.F. , Shim , H.W. and Huang , H.C. 2008 . Size dependence of twin formation energy in cubic SiC at the nanoscale . Appl. Phys. Lett , 92 : 261908
  • Rupich , S.M. , Shevchenko , E.V. , Bodnarchuk , M.I. , Lee , B. and Talapin , D.V. 2010 . Size-dependent multiple twinning in nanocrystal superlattices . J. Am. Chem. Soc , 132 : 289
  • Wang , D.H. , Xu , D. , Wang , Q. , Hao , Y.J. , Jin , G.Q. , Guo , X.Y. and Tu , K.N. 2008 . Periodically twinned SiC nanowires . Nanotechnology , 19 : 215602
  • Zhang , Y.F. and Huang , H.C. 2009 . Twin Cu nanowires using energetic beams . Appl. Phys. Letts , 95 : 111914
  • Mishin , Y. , Mehl , M.J. , Papaconstantopoulos , D.A. , Voter , A.F. and Kress , J.D. 2001 . Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations . Phys. Rev. B , 63 : 224106
  • Mishin , Y. , Farkas , D. , Mehl , M.J. and Papaconstantopoulos , D.A. 1999 . Interatomic potentials for monoatomic metals from experimental data and ab initio calculations . Phys. Rev. B , 59 : 3393 – 3407 .
  • Li , Y.H. , Siegel , D.J. , Adams , J.B. and Liu , X.Y. 2003 . Embedded-atom-method tantalum potential developed by the force-matching method . Phys. Rev. B , 67 : 125101
  • Sun , D.Y. , Mendelev , M.I. , Becker , C.A. , Kudin , K. , Haxhimali , T. , Asta , M. , Hoyt , J.J. , Karma , A. and Srolovitz , D.J. 2006 . Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of Mg . Phys. Rev. B , 73 : 024116
  • Parrinello , M. and Rahman , A. 1980 . Crystal structure and pair potentials: A molecular-dynamics study . Phys. Rev. Lett , 45 : 1196 – 1199 .
  • Shim , H.W. and Huang , H.C. 2007 . Three-stage transition during silicon carbide nanowire growth . Appl. Phys. Letts , 90 : 083106