6,679
Views
42
CrossRef citations to date
0
Altmetric
Original Articles

Silicone rubbers for dielectric elastomers with improved dielectric and mechanical properties as a result of substituting silica with titanium dioxide

&
Pages 268-289 | Received 19 Sep 2015, Accepted 09 Nov 2015, Published online: 08 Dec 2015

References

  • A.L. Larsen, K.K. Hansen, P. Sommer-Larsen, O. Hassager, A. Bach, S. Ndoni, and M. Jørgensen, Elastic properties of nonstoichiometric reacted PDMS networks, Macromolecules 36 (2003), pp. 10063–10070. doi:10.1021/ma034355p
  • F.B. Madsen, A.E. Daugaard, S. Hvilsted, M.Y. Benslimane, and A.L. Skov, Dipolar cross-linkers for PDMS networks with enhanced dielectric permittivity and low dielectric loss, Smart Mater. Struct. 22 (2013), pp. 104002. doi:10.1088/0964-1726/22/10/104002
  • F.B. Madsen, L. Yu, A.E. Daugaard, S. Hvilsted, M.Y. Benslimane, and A.L. Skov, A new soft dielectric silicone elastomer matrix with high mechanical integrity and low losses, RSC Adv. 5 (2015), pp. 10254–10259. doi:10.1039/C4RA13511C
  • B. Kussmaul, H. Krueger, S. Risse, and G. Kofod, Synergistic improvement of actuation properties with compatibilized high permittivity filler, Adv. Funct. Mater. 22 (2012), pp. 3958–3962. doi:10.1002/adfm.201200320
  • S. Vudayagiri, L. Yu, and A.L. Skov, Techniques for hot embossing microstructures on liquid silicone rubbers with fillers, J. Elastomers Plast. (2014). doi:10.1177/0095244314526743
  • E. Delebecq and F. Ganachaud, Looking over liquid silicone rubbers: (1) Network topology vs chemical formulations, ACS Appl. Mater. Interfaces. 4 (2012), pp. 3340–3352. doi:10.1021/am300502r
  • C. Hopmann, C. Behmenburg, U. Recht, and K. Zeuner, Injection molding of superhydrophobic liquid silicone rubber surfaces, Silicon 6 (2014), pp. 35–43. doi:10.1007/s12633-013-9164-0
  • E. Delebecq, N. Hermeline, A. Flers, and F. Ganachaud, Looking over liquid silicone rubbers: (2) Mechanical properties vs network topology, ACS Appl. Mater. Interfaces. 4 (2012), pp. 3353–3363. doi:10.1021/am300503j
  • W.L. Wu and J.Y. Cai, Study on short basalt fiber reinforced silicone rubber composites, Advanced Mater. Res. 800 (2013), pp. 383–386. doi:10.4028/www.scientific.net/AMR.800
  • A.L. Skov, A.G. Bejenariu, J. Bøgelund, M. Benslimane, and A.D. Egede, Influence of micro- and nanofillers on electro-mechanical performance of silicone EAPs, SPIE Proceedings 8340, SPIE, San Diego, CA, 2012, pp. 83400M-1–83400M-10.
  • S.S. Hassouneh, A.E. Daugaard, and A.L. Skov, Design of elastomer structure to facilitate incorporation of expanded graphite in silicones without compromising electromechanical integrity, Macromol. Mater. Eng. 300 (2015), pp. 542–550. doi:10.1002/mame.201400383
  • G. Rajesh, P.K. Maji, M. Bhattacharya, A. Choudhury, N. Roy, A. Saxena, and A.K. Bhowmick, Liquid silicone rubber vulcanizates: Network structure – property relationship and cure kinetics, Polym. Polym. Compos. 18 (2010), pp. 477–487.
  • E. Haberstroh, W. Michaeli, and E. Henze, Simulation of the filling and curing phase in injection molding of liquid silicone rubber (LSR), J. Reinf. Plast. Compos. 21 (2002), pp. 461–471. doi:10.1177/0731684402021005476
  • Z. Chen, D. Li, A.J. Shi, Y. Li, and S.X. Wu, Properties characteristics of silicone inhibitors, Advanced Mater. Res. 2527 (2013), pp. 43–46.
  • L.M. Lopez, A.B. Cosgrove, J.P. Hernandez-Ortiz, and T.A. Osswald, Modeling the vulcanization reaction of silicone rubber, Polymer Eng. Sci. 47 (2007), pp. 675–683. doi:10.1002/(ISSN)1548-2634
  • M. Benslimane, H.E. Kiil, and M.J. Tryson, Electromechanical properties of novel large strain PolyPower film and laminate components for DEAP actuator and sensor applications. SPIE Proceedings 7642, SPIE, San Diego, CA, 2010, pp. 764231-1–764231-11.
  • F.B. Madsen, I. Dimitrov, A.E. Daugaard, S. Hvilsted, and A.L. Skov, Novel cross-linkers for PDMS networks for controlled and well distributed grafting of functionalities by click chemistry, Polym Chem. 4 (2013), pp. 1700–1707. doi:10.1039/c2py20966g
  • L. Yu and A.L. Skov, Monolithic growth of partly cured polydimethylsiloxane thin film layers, Polymer J. 46 (2014), pp. 123–129. doi:10.1038/pj.2013.72
  • C. Brosseau and P. Talbot, Instrumentation for microwave frequency-domain spectroscopy of filled polymers under uniaxial tension, Meas. Sci. Technol. 16 (2005), pp. 1823–1832. doi:10.1088/0957-0233/16/9/015
  • S. Vudayagiri, S. Zakaria, L. Yu, S.S. Hassouneh, M. Benslimane, and A.L. Skov, High breakdown-strength composites from liquid silicone rubbers, Smart Mater. Struct. 23 (2014), pp. 105017. doi:10.1088/0964-1726/23/10/105017
  • F. Carpi and D.D. Rossi, Dielectrics and Electrical Insulation, IEEE Trans. Dielectr. Electr.l Insul. 12 (2005), pp. 835–843. doi:10.1109/TDEI.2005.1511110
  • G.L. Wang, Y.Y. Zhang, L. Duan, K.H. Ding, Z.F. Wang, and M. Zhang, Property reinforcement of silicone dielectric elastomers filled with self-prepared calcium copper titanate particles, J. Appl. Polym. Sci. (2015). doi:10.1002/APP.42613
  • P. Sommer-Larsen and A.L. Larsen, Materials for dielectric elastomer actuators, SPIE Proc. 5385 (2004), pp. 68–77.
  • T.G. McKay, E. Calius, and I.A. Anderson, Dielectric constant of 3M VHB: A parameter in dispute. SPIE Proceedings 7287, SPIE, San Diego, CA, 2009, pp. 72870P-1–72870P-10.
  • L. Yu, S. Vudayagiri, S.B. Zakaria, and M.Y. Benslimane, Filled liquid silicone rubbers: Possibilities and challenges. SPIE Proceedings 9056, SPIE, San Diego, CA, 2014, pp. 90560S-1–90560S-9.
  • M. Hosokawa, K. Nogi, M. Naito, and T. Yokoyama, Nanoparticle Technology Handbook, M. Hosokawa, ed., Elsevier, Amsterdam, 2007. pp. 5.
  • L. Yu, L.B. Gonzalez, S. Hvilsted, and A.L. Skov, Soft silicone based interpenetrating networks as materials for actuators. SPIE Proceedings 9056, SPIE, San Diego, CA, 2014, pp. 90560C-1–90560C-9.
  • L. González, A.L. Skov, and S. Hvilsted, Ionic networks derived from the protonation of dendritic amines with carboxylic acid end-functionalized PEGs, Polym Chem. 51 (2013), pp. 1359–1371. doi:10.1002/pola.26503
  • L.A. Dissado and J.C. Fothergill, Electrical Degradation and Breakdown in Polymers, Peter Peregrinus Publisher, London, UK, 1992, pp. 63–65.
  • S.B. Zakaria, P.H.F. Morshuis, M.Y. Benslimane, V.G. Krist, and A.L. Skov, The electrical breakdown of thin dielectric elastomers: Thermal effects. SPIE Proceedings 9056, SPIE, San Diego, CA, 2014, pp. 90562V-1–90562V-12.
  • M.H. Ahmad, H. Ahmad, N. Bashir, Y.Z. Arief, Z. Abdul-Malek, R. Kurnianto, and F. Yusof, A new statistical approach for analysis of tree inception voltage of silicone rubber and epoxy resin under AC ramp voltage, Int. J. Electrical Eng. Inform. 4 (2012), pp. 27–39. doi:10.15676/ijeei
  • S.B. Zakaria, P.H.F. Morshuis, M.Y. Benslimane, L. Yu, and A.L. Skov, The electrical breakdown strength of pre-stretched elastomers, with and without sample volume conservation, Smart Mater. Struct. 24 (2015), pp. 055009. doi:10.1088/0964-1726/24/5/055009
  • R. Kochetov, I.A. Tsekmes, and P.H.F. Morshuis, Electrical conductivity, dielectric response and space charge dynamics of an electroactive polymer with and without nanofiller reinforcement, Smart Mater. Struct. 24 (2015), pp. 075019. doi:10.1088/0964-1726/24/7/075019
  • A. Camenzind, T. Schweizer, M. Sztucki, and S.E. Pratsinis, Structure & strength of silica-PDMS nanocomposites, Polymer 51 (2010), pp. 1796–1804. doi:10.1016/j.polymer.2010.02.030
  • V.P. Silva, M.P. Paschoalino, M.C. Gonçalves, M.I. Felisberti, W.F. Jardim, and I.V.P. Yoshida, Silicone rubbers filled with TiO2: Characterization and photocatalytic activity, Mater. Chem. Phys. 113 (2009), pp. 395–400. doi:10.1016/j.matchemphys.2008.07.104
  • U. Eriksson, G. Engstrom, and M. Rigdahl, Viscosity of some clay-based coating colors at high shear rates, Rheol. Acta 29 (1990), pp. 352–359. doi:10.1007/BF01339890
  • B. Hudec, K. Husekova, E. Dobrocka, T. Lalinsky, J. Aarik, and K. Frohlich, High-permittivity metal-insulator-metal capacitors with TiO2 rutile dielectric and RuO2 bottom electrode, Mater. Sci. Eng. 8 (2010), pp. 012024–012027.
  • G.Z. Liu, C. Wang, C.C. Wang, J. Qiu, M. He, J. Xing, K.J. Jin, H.B. Lu, and G.Z. Yang, Effects of interfacial polarisation on the dielectric properties of BiFeO3 thin film capacitors, Appl. Phys. Lett. 92 (2008), pp. 122903-1–122903-3. doi:10.1063/1.2900989
  • H. Liu, L. Zhang, D. Yang, Y. Yu, L. Yao, and M. Tian, Mechanical, dielectric and actuated strain of silicone elastomer filled with various types of TiO2, Soft Mater. 11 (2013), pp. 363–370. doi:10.1080/1539445X.2012.661821
  • D. Tan, Y. Cao, E. Tuncer, and P. Irwin, Nanofiller dispersion in polymer dielectrics, Mater. Sci. Appl. 4 (2013), pp. 6–15. doi:10.4236/msa.2013.44A002
  • Q. Wang and G. Chen, Effect of nanofillers on the dielectric properties of epoxy nanocomposites, Adv. Mater. Res. 1 (2012), pp. 93–107. doi:10.12989/amr.2012.1.1.093
  • M. Kollosche and G. Kofod, Electrical failure in blends of chemically identical, soft thermoplastic elastomers with different elastic stiffness, Appl. Phys. Lett. 96 (2010), pp. 071904–1. doi:10.1063/1.3319513
  • T. He, X. Zhao, and Z. Suo, Dielectric elastomer membranes undergoing inhomogeneous deformation, J. Appl. Phys. 106 (2009), pp. 083522. doi:10.1063/1.3253322
  • J.L. Yang, Z. Zhang, A.K. Schlarb, and K. Friedrich, On the characterization of tensile creep resistance of polyamide 66 nanocomposites. Part I. Experimental results and general discussions, Polymer 47 (2006), pp. 2791–2801. doi:10.1016/j.polymer.2006.02.065
  • L.H. Lin, H.J. Liu, J.J. Hwang, K.M. Chen, and J.C. Chao, Photocatalytic effects and surface morphologies of modified silicone-TiO2 polymer composites, Mater. Chem. Phys. 127 (2011), pp. 248–252. doi:10.1016/j.matchemphys.2011.01.069
  • P. Paoprasert, S. Kandala, D.P. Sweat, R. Ruther, and P. Gopalan, Versatile grafting chemistry for creation of stable molecular layers on oxides, J. Mater. Chem. 22 (2012), pp. 1046–1053. doi:10.1039/C1JM13293H
  • Z. Li, K. Okamoto, Y. Ohki, and T. Tanaka, Effects of nano-filler addition on partial discharge resistance and dielectric breakdown strength of micro-Al2O3/epoxy composite, IEEE Trans. Dielectr. Electr.l Insul. 17 (2010), pp. 653–661. doi:10.1109/TDEI.2010.5492235