6,351
Views
77
CrossRef citations to date
0
Altmetric
Original Articles

Carbon nanotube-reinforced elastomeric nanocomposites: a review

, , , &
Pages 211-238 | Received 10 Nov 2015, Accepted 13 Nov 2015, Published online: 06 Feb 2016

References

  • V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, and S. Seal, Graphene based materials: Past, present and future, Prog. Mater. Sci. 56 (2011), pp. 1178–1271.
  • H. Kim, A.A. Abdala, and C.W. Macosko, Graphene/polymer nanocomposites, Macromolecules. 43 (2010), pp. 6515–6530.
  • M. Moniruzzaman and K.I. Winey, Polymer nanocomposites containing carbon nanotubes, Macromolecules. 39 (2006), pp. 5194–5205.
  • E.T. Thostenson, Z.F. Ren, and T.W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review, Compos. Sci. Technol. 61 (2001), pp. 1899–1912.
  • P.R. Bandaru, Electrical properties and applications of carbon nanotube structures, J. Nanosci. Nanotechnol. 7 (2007), pp. 1239–1267.
  • J.W.G. Wildoer, L.C. Venema, A.G. Rinzler, R.E. Smalley, and C. Dekker, Electronic structure of atomically resolved carbon nanotubes, Nature. 391 (1998), pp. 59–62.
  • J. Bernholc, D. Brenner, M.B. Nardelli, V. Meunier, and C. Roland, Mechanical and electrical properties of nanotubes, Annu. Rev. Mater. Res. 32 (2002), pp. 347–375.
  • M.F. Yu, Fundamental mechanical properties of carbon nanotubes: Current understanding and the related experimental studies, J. Eng. Mater. T. Asme. 126 (2004), pp. 271–278.
  • S. Iijima, Helical microtubes of graphitic carbon, Nature. 354 (1991), pp. 56–58.
  • J.H. Du, J. Bai, and H.M. Cheng, The present status and key problems of carbon nanotube based polymer composites, Express Polym Lett. 1 (2007), pp. 253–273.
  • W.A. de Heer, Nanotubes and the pursuit of applications, Mrs Bull. 29 (2004), pp. 281–285.
  • T. Uchida and S. Kumar, Single wall carbon nanotube dispersion and exfoliation in polymers, J. Appl. Polym. Sci. 98 (2005), pp. 985–989.
  • J. Sandler, M.S.P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, and A.H. Windle, Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties, Polymer. 40 (1999), pp. 5967–5971.
  • F.H. Gojny, J. Nastalczyk, Z. Roslaniec, and K. Schulte, Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites, Chem. Phys. Lett. 370 (2003), pp. 820–824.
  • M.S.P. Shaffer and A.H. Windle, Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites, Adv. Mater. 11 (1999), pp. 937–941.
  • F. Li, H.M. Cheng, S. Bai, G. Su, and M.S. Dresselhaus, Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes, Appl. Phys. Lett.77 (2000), pp. 3161–3163.
  • A.B. Dalton, S. Collins, E. Munoz, J.M. Razal, V.H. Ebron, J.P. Ferraris, J.N. Coleman, B.G. Kim, and R.H. Baughman, Super-tough carbon-nanotube fibres - These extraordinary composite fibres can be woven into electronic textiles, Nature. 423 (2003), pp. 703–703.
  • K. Lozano, S.Y. Yang, and R.E. Jones, Nanofiber toughened polyethylene composites, Carbon. 42 (2004), pp. 2329–2331.
  • J.K.W. Sandler, S. Pegel, M. Cadek, F. Gojny, M. Van Es, J. Lohmar, W.J. Blau, K. Schulte, A.H. Windle, and M.S.P. Shaffer, A comparative study of melt spun polyamide-12 fibres reinforced with carbon nanotubes and nanofibres, Polymer. 45 (2004), pp. 2001–2015.
  • J.O. Aguilar, Influence of carbon nanotube clustering on the electrical conductivity of polymer composite films, Express Polym. Lett. 4 (2010), pp. 292–299.
  • M. Ahmadi and A. Shojaei, Cure kinetic and network structure of NR/SBR composites reinforced by multiwalled carbon nanotube and carbon blacks, Thermochim. Acta. 566 (2013), pp. 238–248.
  • U. Basuli, T.K. Chaki, and S. Chattopadhyay, Thermomechanical and rheological behaviour of polymer nanocomposites based on ethylene–methyl acrylate (EMA) and multiwalled carbon nanotube (MWNT), Plast. Rubber Compos. 40 (2011), pp. 213–222.
  • U. Basuli, T.K. Chaki, D.K. Setua, and S. Chattopadhyay, A comprehensive assessment on degradation of multi-walled carbon nanotube-reinforced EMA nanocomposites, J. Therm. Anal. Calorim. 108 (2011), pp. 1223–1234.
  • S. Bhattacharyya, C. Sinturel, O. Bahloul, M.-L. Saboungi, S. Thomas, and J.-P. Salvetat, Improving reinforcement of natural rubber by networking of activated carbon nanotubes, Carbon. 46 (2008), pp. 1037–1045.
  • L. Bokobza, Multiwall carbon nanotube-filled natural rubber: Electrical and mechanical properties, Express Polym Lett. 6 (2012), pp. 213–223.
  • L. Bokobza, A Raman investigation of carbon nanotubes embedded in a soft polymeric matrix, J. Inorg. Organomet. Polym. Mater. 22 (2011), pp. 629–635.
  • G. Broza, Thermoplastic elastomers with multi-walled carbon nanotubes: Influence of dispersion methods on morphology, Compos. Sci. Technol. 70 (2010), pp. 1006–1010.
  • Z.-M. Dang, K. Shehzad, J.-W. Zha, A. Mujahid, T. Hussain, J. Nie, and C.-Y. Shi, Complementary percolation characteristics of carbon fillers based electrically percolative thermoplastic elastomer composites, Compos. Sci. Technol. 72 (2011), pp. 28–35.
  • A. Fakhru’l-Razi, M.A. Atieh, N. Girun, T.G. Chuah, M. El-Sadig, and D.R.A. Biak, Effect of multi-wall carbon nanotubes on the mechanical properties of natural rubber, Compos. Struct. 75 (2006), pp. 496–500.
  • J. Fritzsche, H. Lorenz, and M. Klüppel, CNT based elastomer-hybrid-nanocomposites with promising mechanical and electrical properties, Macromol. Mater. Eng. 294 (2009), pp. 551–560.
  • M. Hemmati, A. Narimani, H. Shariatpanahi, A. Fereidoon, and M.G. Ahangari, Study on morphology, rheology and mechanical properties of thermoplastic elastomer polyolefin (TPO)/carbon nanotube nanocomposites with reference to the effect of polypropylene-grafted-maleic anhydride (PP-g-MA) as a compatibilizer, Int. J. Polym. Mater. 60 (2011), pp. 384–397.
  • Y. He and Y. Tang, Thermal conductivity of carbon nanotube/natural rubber composite from molecular dynamics simulations, J. Theor. Comput. Chem. 12 (2013), pp. 1350011.
  • A. Shanmugharaj, J. Bae, K. Lee, W. Noh, S. Lee, and S. Ryu, Physical and chemical characteristics of multiwalled carbon nanotubes functionalized with aminosilane and its influence on the properties of natural rubber composites, Compos. Sci. Technol. 67 (2007), pp. 1813–1822.
  • D. Steinhauser, Influence of ionic liquids on the dielectric relaxation behavior of CNT based elastomer nanocomposites, Express Polym. Lett. 6 (2012), pp. 927–936.
  • G. Sui, W.H. Zhong, X.P. Yang, and Y.H. Yu, Curing kinetics and mechanical behavior of natural rubber reinforced with pretreated carbon nanotubes, Mater. Sci. Eng: A. 485 (2008), pp. 524–531.
  • G. Sui, W.H. Zhong, X.P. Yang, Y.H. Yu, and S.H. Zhao, Preparation and properties of natural rubber composites reinforced with pretreated carbon nanotubes, Polym. Advan. Technol. 19 (2008), pp. 1543–1549.
  • M.A.A. Tarawneh, S.H. Ahmad, R. Rasid, S.Y. Yahya, S.A.R. Bahri, S. Ehnoum, K.Z. Ka, and L.Y. Seng, Mechanical properties of thermoplastic natural rubber (TPNR) reinforced with different types of carbon nanotube, Sains. Malays. 40 (2011), pp. 725–728.
  • T.T.N. Dang, S.P. Mahapatra, V. Sridhar, J.K. Kim, K.J. Kim, and H. Kwak, Dielectric properties of nanotube reinforced butyl elastomer composites, J. Appl. Polym. Sci. 113 (2009), pp. 1690–1700.
  • S.K. Yadav, S.S. Mahapatra, and J.W. Cho, Tailored dielectric and mechanical properties of noncovalently functionalized carbon nanotube/poly(styrene-b-(ethylene- co-butylene)-b-styrene) nanocomposites, J. Appl. Polym. Sci. 129 (2013), pp. 2305–2312.
  • G. Scherillo, M. Lavorgna, G.G. Buonocore, Y.H. Zhan, H.S. Xia, G. Mensitieri, and L. Ambrosio, Tailoring assembly of reduced graphene oxide nanosheets to control gas barrier properties of natural rubber nanocomposites, Acs Appl. Mater. Inter. 6 (2014), pp. 2230–2234.
  • K. Subramaniam, A. Das, D. Steinhauser, M. Klüppel, and G. Heinrich, Effect of ionic liquid on dielectric, mechanical and dynamic mechanical properties of multi-walled carbon nanotubes/polychloroprene rubber composites, Eur. Polym. J. 47 (2011), pp. 2234–2243.
  • Y. Pan, L. Li, S.H. Chan, and J. Zhao, Correlation between dispersion state and electrical conductivity of MWCNTs/PP composites prepared by melt blending, Compos. Part A- Appl. S. 41 (2010), pp. 419–426.
  • J. Huang and D. Rodrigue, Equivalent continuum models of carbon nanotube reinforced polypropylene composites, Mater. Design. 50 (2013), pp. 936–945.
  • S.K. Tiwari, R.N.P. Choudhary, and S.P. Mahapatra, Relaxation behavior of chlorobutyl e elastomer nanocomposites: Effect of temperature, multiwalled carbon nanotube and frequency, J. Polym Res. 20 (2013), pp. 176.
  • H. Koerner, G. Price, N.A. Pearce, M. Alexander, and R.A. Vaia, Remotely actuated polymer nanocomposites - stress-recovery of carbon-nanotube-filled thermoplastic elastomers, Nat. Mater. 3 (2004), pp. 115–120.
  • A. Boonmahitthisud and S. Chuayjuljit, NR/XSBR nanocomposites with carbon black and carbon nanotube prepared by latex compounding, J. Metals Mater. Miner. 22 (2012), pp. 77–85.
  • X. Wenjun and M.G. Allen, Fabrication of patterned carbon nanotube (CNT)/elastomer bilayer material and its utilization as force sensors. in Solid-State Sensors, Actuator and Microsystems Conf. 2009, Transducers, IEE, Denver, Colorado, USA, 2009, pp. 2242–2245.
  • Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis, Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties, Prog. Polym. Sci. 35 (2010), pp. 357–401.
  • T.K. Das and S. Prusty, Graphene-based polymer composites and their applications, Polym. Plast. Technol. Eng. 52 (2013), pp. 319–331.
  • S. Bal and S.S. Samal, Carbon nanotube reinforced polymer composites - A state of the art, Bull. Mater. Sci. 30 (2007), pp. 379–386.
  • R. Andrews and M.C. Weisenberger, Carbon nanotube polymer composites, Curr. Opin. Solid St. M. 8 (2004), pp. 31–37.
  • N. Roy, R. Sengupta, and A.K. Bhowmick, Modifications of carbon for polymer composites and nanocomposites, Prog. Polym. Sci. 37 (2012), pp. 781–819.
  • C.-Y. Hu, Y.-J. Xu, S.-W. Duo, R.-F. Zhang, and M.-S. Li, Non-covalent functionalization of carbon nanotubes with surfactants and polymers, J. Chinese Chem. Soc. 56 (2009), pp. 234–239.
  • L.A. Girifalco, M. Hodak, and R.S. Lee, Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential, Phys. Rev. B. 62 (2000), pp. 13104–13110.
  • S. Bandow, A.M. Rao, K.A. Williams, A. Thess, R.E. Smalley, and P.C. Eklund, Purification of single-wall carbon nanotubes by microfiltration, J. Phys. Chem. B. 101 (1997), pp. 8839–8842.
  • G.S. Duesberg, M. Burghard, J. Muster, and G. Philipp, Separation of carbon nanotubes by size exclusion chromatography, Chem. Commun. 3 (1998), pp. 435–436.
  • V. Krstic, G.S. Duesberg, J. Muster, M. Burghard, and S. Roth, Langmuir-Blodgett films of matrix-diluted single-walled carbon nanotubes, Chem. Mater. 10 (1998), pp. 2338–2340.
  • M.I.H. Panhuis, C. Salvador-Morales, E. Franklin, G. Chambers, A. Fonseca, J.B. Nagy, W.J. Blau, and A.I. Minett, Characterization of an interaction between functionalized carbon nanotubes and an enzyme, J. Nanosci. Nanotechnol. 3 (2003), pp. 209–213.
  • M.F. Islam, E. Rojas, D.M. Bergey, A.T. Johnson, and A.G. Yodh, High weight fraction surfactant solubilization of single-wall carbon nanotubes in water, Nano Lett. 3 (2003), pp. 269–273.
  • A.A. Abdullateef, S.P. Thomas, M.A. Al-Harthi, S.K. De, S. Bandyopadhyay, A.A. Basfar, and M.A. Atieh, Natural rubber nanocomposites with functionalized carbon nanotubes: Mechanical, dynamic mechanical, and morphology studies, J. Appl. Polym. Sci. 125 (2012), pp. E76–E84.
  • Z. Peng, C. Feng, Y. Luo, Y. Li, and L.X. Kong, Self-assembled natural rubber/multi-walled carbon nanotube composites using latex compounding techniques, Carbon. 48 (2010), pp. 4497–4503.
  • G. Sui, W. Zhong, X. Yang, and S. Zhao, Processing and material characteristics of a carbon-nanotube-reinforced natural rubber, Macromol. Mater. Eng. 292 (2007), pp. 1020–1026.
  • L.D. Perez, M.A. Zuluaga, T. Kyu, J.E. Mark, B.L. Lopez, and P. Tandon, Preparation, characterization, and physical properties of multiwall carbon nanotube/elastomer composites, Polym. Eng. Sci. 49 (2009), pp. 866–874.
  • A. Katihabwa, W. Wencai, J. Yi, Z. Xiuying, L. Yonglai, and Z. Liqun, Multi-walled carbon nanotubes/silicone rubber nanocomposites prepared by high shear mechanical mixing, J. Reinf. Plast. Compos. 30 (2011), pp. 1007–1014.
  • S.B. Jagtap, Preparation and characterization of rubbery epoxy/multiwall carbon nanotubes composites using amino acid salt assisted dispersion technique, Express Polym. Lett. 7 (2013), pp. 329–339.
  • F. Barroso-Bujans, R. Verdejo, M. Perez-Cabero, S. Agouram, I. Rodriguez-Ramos, A. Guerrero-Ruiz, and M.A. Lopez-Manchado, Effects of functionalized carbon nanotubes in peroxide crosslinking of diene elastomers, Eur. Polym. J. 45 (2009), pp. 1017–1023.
  • Y.S. Park, M. Huh, S.J. Kang, S.I. Yun, and K.H. Ahn, Effect of CNT diameter on physical properties of styrene-butadiene rubber nanocomposites, Carbon Lett. 10 (2009), pp. 320–324.
  • L. Jiang, C. Zhang, M. Liu, Z. Yang, W.W. Tjiu, and T. Liu, Simultaneous reinforcement and toughening of polyurethane composites with carbon nanotube/halloysite nanotube hybrids, Compos. Sci. Technol. 91 (2014), pp. 98–103.
  • A. Das, K.W. Stöckelhuber, R. Jurk, M. Saphiannikova, J. Fritzsche, H. Lorenz, M. Klüppel, and G. Heinrich, Modified and unmodified multiwalled carbon nanotubes in high performance solution-styrene–butadiene and butadiene rubber blends, Polymer. 49 (2008), pp. 5276–5283.
  • Y.H. Zhan, R. Patel, M. Lavorgna, F. Piscitelli, A. Khan, H.S. Xia, H. Benkreira, and P. Coates, Processing of polyurethane/carbon nanotubes composites using novel minimixer, Plast. Rubber Compos. 39 (2010), pp. 400–410.
  • M.-J. Jiang, Z.-M. Dang, and H.-P. Xu, Giant dielectric constant and resistance-pressure sensitivity in carbon nanotubes/rubber nanocomposites with low percolation threshold, Appl. Phys. Lett. 90 (2007), pp. 042914.
  • J. Zhang, Y. Wang, X. Wang, G. Ding, Y. Pan, H. Xie, Q. Chen, and R. Cheng, Effects of amino-functionalized carbon nanotubes on the properties of amine-terminated butadiene-acrylonitrile rubber-toughened epoxy resins, J. Appl. Polym. Sci. 131 (2014), pp. 40472.
  • R. Zhang, H. Deng, R. Valenca, J. Jin, Q. Fu, E. Bilotti, and T. Peijs, Strain sensing behaviour of elastomeric composite films containing carbon nanotubes under cyclic loading, Compos. Sci. Technol. 74 (2013), pp. 1–5.
  • H.H. Le, X.T. Hoang, A. Das, U. Gohs, K.W. Stoeckelhuber, R. Boldt, G. Heinrich, R. Adhikari, and H.J. Radusch, Kinetics of filler wetting and dispersion in carbon nanotube/rubber composites, Carbon. 50 (2012), pp. 4543–4556.
  • F.F. Semeriyanov, A.I. Chervanyov, R. Jurk, K. Subramaniam, S. König, M. Roscher, A. Das, K.W. Stöckelhuber, and G. Heinrich, Non-monotonic dependence of the conductivity of carbon nanotube-filled elastomers subjected to uniaxial compression/decompression, J. Appl. Phys. 113 (2013), pp. 103706.
  • K. Subramaniam, A. Das, and G. Heinrich, Development of conducting polychloroprene rubber using imidazolium based ionic liquid modified multi-walled carbon nanotubes, Compos. Sci. Technol. 71 (2011), pp. 1441–1449.
  • K. Oh, J.Y. Lee, -S.-S. Lee, M. Park, D. Kim, and H. Kim, Highly stretchable dielectric nanocomposites based on single-walled carbon nanotube/ionic liquid gels, Compos. Sci. Technol. 83 (2013), pp. 40–46.
  • T.A. Kim, H.S. Kim, S.S. Lee, and M. Park, Single-walled carbon nanotube/silicone rubber composites for compliant electrodes, Carbon. 50 (2012), pp. 444–449.
  • S. Cantournet, M.C. Boyce, and A.H. Tsou, Micromechanics and macromechanics of carbon nanotube-enhanced elastomers, J. Mech. Phys. Solids. 55 (2007), pp. 1321–1339.
  • D. Ponnamma, S.H. Sung, J.S. Hong, K.H. Ahn, K.T. Varughese, and S. Thomas, Influence of non-covalent functionalization of carbon nanotubes on the rheological behavior of natural rubber latex nanocomposites, Eur. Polym. J. 53 (2014), pp. 147–159.
  • M.-J. Jiang, Z.-M. Dang, S.-H. Yao, and J. Bai, Effects of surface modification of carbon nanotubes on the microstructure and electrical properties of carbon nanotubes/rubber nanocomposites, Chem. Phys. Lett. 457 (2008), pp. 352–356.
  • A. Das, K.W. Stöckelhuber, R. Jurk, J. Fritzsche, M. Klüppel, and G. Heinrich, Coupling activity of ionic liquids between diene elastomers and multi-walled carbon nanotubes, Carbon. 47 (2009), pp. 3313–3321.
  • P. Kueseng, P. Sae-oui, and N. Rattanasom, Mechanical and electrical properties of natural rubber and nitrile rubber blends filled with multi-wall carbon nanotube: Effect of preparation methods, Polym. Test. 32 (2013), pp. 731–738.
  • S. Badaire, P. Poulin, M. Maugey, and C. Zakri, In situ measurements of nanotube dimensions in suspensions by depolarized dynamic light scattering, Langmuir. 20 (2004), pp. 10367–10370.
  • H. Koerner, W. Liu, M. Alexander, P. Mirau, H. Dowty, and R.A. Vaia, Deformation–morphology correlations in electrically conductive carbon nanotube—Thermoplastic polyurethane nanocomposites, Polymer. 46 (2005), pp. 4405–4420.
  • C. Kummerlöwe, N. Vennemann, E. Yankova, M. Wanitschek, C. Größ, T. Heider, F. Haberkorn, and A. Siebert, Preparation and properties of carbon nanotube composites with nitrile- and styrene-butadiene rubbers, Polym. Eng. Sci. 53 (2013), pp. 849–856.
  • L. Bokobza, Enhanced electrical and mechanical properties of multiwall carbon nanotube rubber composites, Polym. Advan. Technol. 23 (2012), pp. 1543–1549.
  • M.K. Shin, J. Oh, M. Lima, M.E. Kozlov, S.J. Kim, and R.H. Baughman, Elastomeric conductive composites based on carbon nanotube forests, Adv. Mater. 22 (2010), pp. 2663–2667.
  • Z.F. Liu, S. Fang, F.A. Moura, J.N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D.S. Galvão, C.S. Haines, N.Y. Yuan, S.G. Yin, D.W. Lee, R. Wang, H.Y. Wang, W. Lv, C. Dong, R.C. Zhang, M.J. Chen, Q. Yin, Y.T. Chong, R. Zhang, X. Wang, M.D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, and R.H. Baughman, Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles, Science. 349 (2015), pp. 400–404.
  • T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D.N. Futaba, and K. Hata, A stretchable carbon nanotube strain sensor for human-motion detection, Nat. Nano. 6 (2011), pp. 296–301.
  • P. Verge, S. Peeterbroeck, L. Bonnaud, and P. Dubois, Investigation on the dispersion of carbon nanotubes in nitrile butadiene rubber: Role of polymer-to-filler grafting reaction, Compos. Sci. Technol. 70 (2010), pp. 1453–1459.
  • Z. Wu, H. Wang, X. Tian, X. Ding, M. Xue, H. Zhou, and K. Zheng, Mechanical and flame-retardant properties of styrene–ethylene–butylene–styrene/carbon nanotube composites containing bisphenol A bis(diphenyl phosphate), Compos. Sci. Technol. 82 (2013), pp. 8–14.
  • J.N. Coleman, U. Khan, W.J. Blau, and Y.K. Gun’ko, Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites, Carbon. 44 (2006), pp. 1624–1652.
  • L.S. Schadler, S.C. Giannaris, and P.M. Ajayan, Load transfer in carbon nanotube epoxy composites, Appl. Phys. Lett. 73 (1998), pp. 3842–3844.
  • J. Zhu, J.D. Kim, H.Q. Peng, J.L. Margrave, V.N. Khabashesku, and E.V. Barrera, Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization, Nano Lett. 3 (2003), pp. 1107–1113.
  • X.Y. Gong, J. Liu, S. Baskaran, R.D. Voise, and J.S. Young, Surfactant-assisted processing of carbon nanotube/polymer composites, Chem. Mat. 12 (2000), pp. 1049–1052.
  • Z. Wang, X. Yang, Q. Wang, H.T. Hahn, S.-G. Lee, K.-H. Lee, and Z. Guo, Epoxy resin nanocomposites reinforced with ionized liquid stabilized carbon nanotubes, Int. J. Smart Nano Mater. 2 (2011), pp. 176–193.
  • A. Szymczyk, Poly(trimethylene terephthalate-block-tetramethylene oxide) elastomer /single-walled carbon nanotubes nanocomposites: Synthesis, structure, and properties, Appl. Polym. Sci. 126 (2012), pp. 796–807.
  • Z. Roslaniec, G. Broza, and K. Schulte, Nanocomposites based on multiblock polyester elastomers (PEE) and carbon nanotubes (CNT), Compos. Interf. 10 (2003), pp. 95–102.
  • H. Lorenz, J. Fritzsche, A. Das, K.W. Stöckelhuber, R. Jurk, G. Heinrich, and M. Klüppel, Advanced elastomer nano-composites based on CNT-hybrid filler systems, Compos. Sci. Technol. 69 (2009), pp. 2135–2143.
  • H. Ismail, A.F. Ramly, and N. Othman, Effects of silica/multiwall carbon nanotube hybrid fillers on the properties of natural rubber nanocomposites, J. Appl. Polym. Sci. 128 (2013), pp. 2433–2438.
  • A. Das, G.R. Kasaliwal, R. Jurk, R. Boldt, D. Fischer, K.W. Stöckelhuber, and G. Heinrich, Rubber composites based on graphene nanoplatelets, expanded graphite, carbon nanotubes and their combination: A comparative study, Compos. Sci. Technol. 72 (2012), pp. 1961–1967.
  • B. Pradhan and S.K. Srivastava, Synergistic effect of three-dimensional multi-walled carbon nanotube-graphene nanofiller in enhancing the mechanical and thermal properties of high-performance silicone rubber, Polym. Int. 63 (2014), pp. 1219–1228.
  • S. Schopp, R. Thomann, K.-F. Ratzsch, S. Kerling, V. Altstädt, and R. Mülhaupt, Functionalized graphene and carbon materials as components of styrene-butadiene rubber nanocomposites prepared by aqueous dispersion blending, Macromol. Mater. Eng. 299 (2014), pp. 319–329.
  • F. Deng, M. Ito, T. Noguchi, L. Wang, H. Ueki, K.-I. Niihara, Y.A. Kim, M. Endo, and Q.-S. Zheng, Elucidation of the reinforcing mechanism in carbon nanotube/rubber nanocomposites, ACS Nano. 5 (2011), pp. 3858–3866.
  • C.H. Liu and S.S. Fan, Nonlinear electrical conducting behavior of carbon nanotube networks in silicone elastomer, Appl. Phys. Lett. 90 (2007), pp. 041905.
  • M. Norkhairunnisa, A. Azizan, M. Mariatti, H. Ismail, and L. Sim, Thermal stability and electrical behavior of polydimethylsiloxane nanocomposites with carbon nanotubes and carbon black fillers, J. Compos. Mater. 46 (2011), pp. 903–910.
  • H. Hu, L. Zhao, J. Liu, Y. Liu, J. Cheng, J. Luo, Y. Liang, Y. Tao, X. Wang, and J. Zhao, Enhanced dispersion of carbon nanotube in silicone rubber assisted by graphene, Polymer. 53 (2012), pp. 3378–3385.
  • K. Tsuchiya, A. Sakai, T. Nagaoka, K. Uchida, T. Furukawa, and H. Yajima, High electrical performance of carbon nanotubes/rubber composites with low percolation threshold prepared with a rotation–revolution mixing technique, Compos. Sci. Technol. 71 (2011), pp. 1098–1104.
  • L. Bokobza, Mechanical, electrical and spectroscopic investigations of carbon nanotube-reinforced elastomers, Vib. Spectrosc. 51 (2009), pp. 52–59.
  • J.-B. Lee and D.-Y. Khang, Electrical and mechanical characterization of stretchable multi-walled carbon nanotubes/polydimethylsiloxane elastomeric composite conductors, Compos. Sci. Technol. 72 (2012), pp. 1257–1263.
  • B. Pradhan and S.K. Srivastava, Layered double hydroxide/multiwalled carbon nanotube hybrids as reinforcing filler in silicone rubber, Compos. Part A: Appl. Sci. Manuf. 56 (2014), pp. 290–299.
  • C. Nah, J.Y. Lim, R. Sengupta, B.H. Cho, and A.N. Gent, Slipping of carbon nanotubes in a rubber matrix, Polym. Int. 60 (2011), pp. 42–44.
  • C. Nah, J.Y. Lim, B.H. Cho, C.K. Hong, and A.N. Gent, Reinforcing rubber with carbon nanotubes, J. Appl. Polym. Sci. 118 (2010), pp. 1574–1581.
  • B. Mensah, S. Kim, S. Arepalli, and C. Nah, A study of graphene oxide-reinforced rubber nanocomposite, Appl. Polym. Sci. 131 (2014), pp. 40640.
  • M.A. Kader, D. Choi, S.K. Lee, and C. Nah, Morphology of conducting filler-reinforced nitrile rubber composites by electrostatic force microscopy, Polym. Test. 24 (2005), pp. 363–366.
  • Y. Sato, K. Hasegawa, Y. Nodasaka, K. Motomiya, M. Namura, N. Ito, B. Jeyadevan, and K. Tohji, Reinforcement of rubber using radial single-walled carbon nanotube soot and its shock dampening properties, Carbon. 46 (2008), pp. 1509–1512.
  • H.K. Joseph, Polymer Nanocomposites: Processing, Characterization, and Applications, McGraw-Hill, USA, 2006, pp. 92 (272).
  • L. Bokobza, The reinforcement of elastomeric networks by fillers, Macromol. Mater. Eng. 289 (2004), pp. 607–621.
  • P. Mallick, Fiber-Reinforced Composites, M. Dekker, New-York, NY, 1993, pp. 130.
  • L. Bokobza, Multiwall carbon nanotube elastomeric composites: A review, Polymer. 48 (2007), pp. 4907–4920.
  • T.P. Selvin, J. Kuruvilla, and T. Sabu, Mechanical properties of titanium dioxide-filled polystyrene microcomposites, Mater. Lett. 58 (2004), pp. 281–289.
  • F. Ramsteiner and R. Theysohn, On the tensile behavior of filled composites, Compos. Part A: Appl. Sci. Manuf. 15 (1984), pp. 121–128.
  • C.H. Liu, H. Huang, Y. Wu, and S.S. Fan, Thermal conductivity improvement of silicone elastomer with carbon nanotube loading, Appl. Phys. Lett. 84 (2004), pp. 4248.
  • S. Araby, Q. Meng, L. Zhang, H. Kang, P. Majewski, Y. Tang, and J. Ma, Electrically and thermally conductive elastomer/graphene nanocomposites by solution mixing, Polymer. 55 (2014), pp. 201–210.
  • H.H. Le, M.N. Sriharish, S. Henning, J. Klehm, M. Menzel, W. Frank, S. Wiessner, A. Das, K.W. Stoeckelhuber, G. Heinrich, and H.J. Radusch, Dispersion and distribution of carbon nanotubes in ternary rubber blends, Compos. Sci. Technol. 90 (2014), pp. 180–186.
  • S. Yesil, Effect of carbon nanotube reinforcement on the properties of the recycled poly(ethylene terephthalate)/poly(ethylene naphthalate) (r-PET/PEN) blends containing functional elastomers, Mater Design. 52 (2013), pp. 693–705.
  • R. Andrews, D. Jacques, M. Minot, and T. Rantell, Fabrication of carbon multiwall nanotube/polymer composites by shear mixing, Macromol. Mater. Eng. 287 (2002), pp. 395–403.
  • C.A. Martin, J.K.W. Sandler, M.S.P. Shaffer, M.K. Schwarz, W. Bauhofer, K. Schulte, and A.H. Windle, Formation of percolating networks in multi-wall carbon-nanotube-epoxy composites, Compos. Sci. Technol. 64 (2004), pp. 2309–2316.
  • N. Grossiord, P.J.J. Kivit, J. Loos, J. Meuldijk, A.V. Kyrylyuk, P. Van Der Schoot, and C.E. Koning, On the influence of the processing conditions on the performance of electrically conductive carbon nanotube/polymer nanocomposites, Polymer. 49 (2008), pp. 2866–2872.
  • K.P. Sau, D. Khastgir, and T.K. Chaki, Electrical conductivity of carbon black and carbon fibre filled silicone rubber composites, Angew. Makromol. Chem. 258 (1998), pp. 11–17.
  • P.C. Ma, B.Z. Tang, and J.-K. Kim, Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites, Carbon. 46 (2008), pp. 1497–1505.
  • W. Bauhofer and J.Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites, Compos. Sci. Technol. 69 (2009), pp. 1486–1498.
  • J.J. Hernández, M.C. García-Gutiérrez, A. Nogales, D.R. Rueda, M. Kwiatkowska, A. Szymczyk, Z. Roslaniec, A. Concheso, I. Guinea, and T.A. Ezquerra, Influence of preparation procedure on the conductivity and transparency of SWCNT-polymer nanocomposites, Compos. Sci. Technol. 69 (2009), pp. 1867–1872.
  • L. Chang, K. Friedrich, L. Ye, and P. Toro, Evaluation and visualization of the percolating networks in multi-wall carbon nanotube/epoxy composites, J. Mater. Sci. 44 (2009), pp. 4003–4012.
  • S. Berber, Y.K. Kwon, and D. Tomanek, Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett. 84 (2000), pp. 4613–4616.
  • P. Kim, L. Shi, A. Majumdar, and P.L. McEuen, Thermal transport measurements of individual multiwalled nanotubes, Phys. Rev. Lett. 87 (2001), pp. 215502.
  • S.T. Huxtable, D.G. Cahill, S. Shenogin, L.P. Xue, R. Ozisik, P. Barone, M. Usrey, M.S. Strano, G. Siddons, M. Shim, and P. Keblinski, Interfacial heat flow in carbon nanotube suspensions, Nat. Mater. 2 (2003), pp. 731–734.
  • T.T. Pham, V. Sridhar, and J.K. Kim, Fluoroelastomer-MWNT nanocomposites-1: Dispersion, morphology, physico-mechanical, and thermal properties, Polym. Compos. 30 (2009), pp. 121–130.
  • S. Shang, L. Gan, and M.C.-W. Yuen, Improvement of carbon nanotubes dispersion by chitosan salt and its application in silicone rubber, Compos. Sci. Technol. 86 (2013), pp. 129–134.
  • B. Likozar and Z. Major, Morphology, mechanical, cross-linking, thermal, and tribological properties of nitrile and hydrogenated nitrile rubber/multi-walled carbon nanotubes composites prepared by melt compounding: The effect of acrylonitrile content and hydrogenation, Appl. Surf. Sci. 257 (2010), pp. 565–573.
  • G. Mathew, J.M. Rhee, Y.S. Lee, D.H. Park, and C. Nah, Cure kinetics of ethylene acrylate rubber/clay nanocomposites, J. Ind. Eng. Chem. 14 (2008), pp. 60–65.
  • F.X. Qin, C. Brosseau, and H.X. Peng, Microwave properties of carbon nanotube/microwire/rubber multiscale hybrid composites, Chem. Phys. Lett. 579 (2013), pp. 40–44.