2,000
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Simultaneously improved actuated performance and mechanical strength of silicone elastomer by reduced graphene oxide encapsulated silicon dioxide

, , , &
Pages 251-267 | Received 29 Sep 2015, Accepted 08 Dec 2015, Published online: 06 Feb 2016

References

  • A. O’Halloran, F. O’Malley, and P. McHugh, A review on dielectric elastomer actuators, technology, applications, and challenges, J. Appl. Phys. 104 (7) (2008), pp. 071101. doi:10.1063/1.2981642
  • S. Bauer, S. Bauer-Gogonea, I. Graz, M. Kaltenbrunner, C. Keplinger, and R. Schwödiauer, 25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters, Adv. Mater. 26 (1) (2014), pp. 149–162. doi:10.1002/adma.201303349
  • K. Wongtimnoi, B. Guiffard, A. Bogner-Van De Moortèle, L. Seveyrat, C. Gauthier, and J.-Y. Cavaillé, Improvement of electrostrictive properties of a polyether-based polyurethane elastomer filled with conductive carbon black, Compos. Sci. Technol. 71 (6) (2011), pp. 885–892. doi:10.1016/j.compscitech.2011.02.003
  • L.Z. Chen, C.H. Liu, C.H. Hu, and S.S. Fan, Electrothermal actuation based on carbon nanotube network in silicone elastomer, Appl. Phys. Lett. 92 (26) (2008), pp. 263104. doi:10.1063/1.2955513
  • A. Tiwari, A.P. Mishra, S.R. Dhakate, R. Khan, and S.K. Shukla, Synthesis of electrically active biopolymer–SiO2 nanocomposite aerogel, Mater. Lett. 61 (23–24) (2007), pp. 4587–4590. doi:10.1016/j.matlet.2007.02.076
  • R. Palakodeti and M.R. Kessler, Influence of frequency and prestrain on the mechanical efficiency of dielectric electroactive polymer actuators, Mater. Lett. 60 (29–30) (2006), pp. 3437–3440. doi:10.1016/j.matlet.2006.03.053
  • S.M. Ha, W. Yuan, Q. Pei, R. Pelrine, and S. Stanford, Interpenetrating Polymer Networks for High-Performance Electroelastomer Artificial Muscles, Adv. Mater. 18 (7) (2006), pp. 887–891. doi:10.1002/(ISSN)1521-4095
  • R. Pelrine, High-Speed Electrically Actuated Elastomers with Strain Greater Than 100%, Science 287 (5454) (2000), pp. 836–839. doi:10.1126/science.287.5454.836
  • H. Stoyanov, M. Kollosche, S. Risse, D.N. McCarthy, and G. Kofod, Elastic block copolymer nanocomposites with controlled interfacial interactions for artificial muscles with direct voltage control, Soft Matter 7 (1) (2011), pp. 194–202. doi:10.1039/C0SM00715C
  • F. Carpi, P. Chiarelli, A. Mazzoldi, and D. De Rossi, Electromechanical characterisation of dielectric elastomer planar actuators: Comparative evaluation of different electrode materials and different counterloads, Sensors and Actuators A: Physical 107 (1) (2003), pp. 85–95. doi:10.1016/S0924-4247(03)00257-7
  • M. Molberg, D. Crespy, P. Rupper, F. Nüesch, J.-A.E. Månson, C. Löwe, and D.M. Opris, High Breakdown Field Dielectric Elastomer Actuators Using Encapsulated Polyaniline as High Dielectric Constant Filler, Adv. Funct. Mater. 20 (19) (2010), pp. 3280–3291. doi:10.1002/adfm.201000486
  • S. Liu, M. Tian, B. Yan, Y. Yao, L. Zhang, T. Nishi, and N. Ning, High performance dielectric elastomers by partially reduced graphene oxide and disruption of hydrogen bonding of polyurethanes, Polymer 56 (2015), pp. 375–384. doi:10.1016/j.polymer.2014.11.012
  • D.M. Opris, M. Molberg, C. Walder, Y.S. Ko, B. Fischer, and F.A. Nüesch, New Silicone Composites for Dielectric Elastomer Actuator Applications In Competition with Acrylic Foil, Adv. Funct. Mater. 21 (18) (2011), pp. 3531–3539. doi:10.1002/adfm.201101039
  • G. Kofod, H. Kollosche, M. Kollosche, S. Risse, H. Ragusch, D. Rychkov, M. Dansachmuller, and D.N. McCarthy, Nano-scale materials science for soft dielectrics:Composites for dielectric elastomer actuators. IEEE International Conference on Solid Dielectrics (ICSD 2010) 10th, 2010.
  • F. Carpi and D. De Rossi, Dielectric elastomer cylindrical actuators: Electromechanical modelling and experimental evaluation, Mater. Sci. Engineering: C 24 (4) (2004), pp. 555–562. doi:10.1016/j.msec.2004.02.005
  • P. Brochu and Q. Pei, Advances in Dielectric Elastomers for Actuators and Artificial Muscles, Macromol. Rapid Commun. 31 (1) (2010), pp. 10–36. doi:10.1002/marc.v31:1
  • S. Vudayagiri, S. Zakaria, L. Yu, S.S. Hassouneh, M. Benslimane, and A.L. Skov, High breakdown-strength composites from liquid silicone rubbers, Smart Mater. Struct. 23 (10) (2014), pp. 105017. doi:10.1088/0964-1726/23/10/105017
  • B. Li, H. Chen, and J. Zhou, Electromechanical stability of dielectric elastomer composites with enhanced permittivity, Composites Part A: Applied Science Manufacturing 52 (2013), pp. 55–61. doi:10.1016/j.compositesa.2012.11.013
  • K. Goswami, A.E. Daugaard, and A.L. Skov, Dielectric properties of ultraviolet cured poly(dimethyl siloxane) sub-percolative composites containing percolative amounts of multi-walled carbon nanotubes, RSC Adv 5 (17) (2015), pp. 12792–12799. doi:10.1039/C4RA14637A
  • H. Liu, Y. Shen, Y. Song, C.-W. Nan, Y. Lin, and X. Yang, Carbon Nanotube Array/Polymer Core/Shell Structured Composites with High Dielectric Permittivity, Low Dielectric Loss, and Large Energy Density, Adv. Mater. 23 (43) (2011), pp. 5104–5108. doi:10.1002/adma.201102079
  • N. Ning, X. Bai, D. Yang, L. Zhang, Y. Lu, T. Nishi, and M. Tian, Dramatically improved dielectric properties of polymer composites by controlling the alignment of carbon nanotubes in matrix, RSC Adv 4 (9) (2014), pp. 4543–4551. doi:10.1039/C3RA45769A
  • J.-K. Yuan, S.-H. Yao, A. Sylvestre, and J. Bai, Biphasic Polymer Blends Containing Carbon Nanotubes: Heterogeneous Nanotube Distribution and Its Influence on the Dielectric Properties, J. Phys. Chem. C 116 (2) (2012), pp. 2051–2058. doi:10.1021/jp210872w
  • I. Alig, D. Lellinger, S.M. Dudkin, and P. Pötschke, Conductivity spectroscopy on melt processed polypropylene–multiwalled carbon nanotube composites: Recovery after shear and crystallization, Polymer 48 (4) (2007), pp. 1020–1029. doi:10.1016/j.polymer.2006.12.035
  • L.J. Romasanta, M. Hernández, M.A. López-Manchado, and R. Verdejo, Functionalised graphene sheets as effective high dielectric constant fillers, Nanoscale Res. Lett. 6 (2011), pp. 508. doi:10.1186/1556-276X-6-508
  • S.K. Kumar, M. Castro, A. Saiter, L. Delbreilh, J.F. Feller, S. Thomas, and Y. Grohens, Development of poly(isobutylene-co-isoprene)/reduced graphene oxide nanocomposites for barrier, dielectric and sensingapplications, Mater. Lett. 96 (2013), pp. 109–112. doi:10.1016/j.matlet.2013.01.036
  • M. Tian, J. Zhang, L. Zhang, S. Liu, X. Zan, T. Nishi, and N. Ning, Graphene encapsulated rubber latex composites with high dielectric constant, low dielectric loss and low percolation threshold, J. Colloid Interface Sci. 430 (2014), pp. 249–256. doi:10.1016/j.jcis.2014.05.034
  • J. Oh, J.-H. Lee, J.C. Koo, H.R. Choi, Y. Lee, T. Kim, N.D. Luong, and J.-D. Nam, Graphene oxide porous paper from amine-functionalized poly(glycidyl methacrylate)/graphene oxide core-shell microspheres, J. Mater. Chem. 20 (41) (2010), pp. 9200–9204. doi:10.1039/c0jm00107d
  • D. Yang, M. Tian, D. Li, W. Wang, F. Ge, and L. Zhang, Enhanced dielectric properties and actuated strain of elastomer composites with dopamine-induced surface functionalization, J. Mater. Chem. A 1 (39) (2013), pp. 12276. doi:10.1039/c3ta12090b
  • F. B. Madsen, A. E. Daugaard, S. Hvilsted, and A. L. Skov, Novel silicone compatible cross-linkers for controlled functionalization of PDMS networks, Electroactive Polymer Actuators and Devices (EAPAD). 8687 (2013), pp. 86871H.
  • M. Tian, Q. Ma, X. Li, L. Zhang, T. Nishi, and N. Ning, High performance dielectric composites by latex compounding of graphene oxide-encapsulated carbon nanosphere hybrids with XNBR, J. Mater. Chem. A 2 (29) (2014), pp. 11144. doi:10.1039/c4ta01600a
  • L. Chu, Q. Xue, J. Sun, F. Xia, W. Xing, D. Xia, and M. Dong, Porous graphene sandwich/poly(vinylidene fluoride) composites with high dielectric properties, Compos. Sci. Technol. 86 (2013), pp. 70–75. doi:10.1016/j.compscitech.2013.07.001
  • L. Seveyrat, A. Chalkha, D. Guyomar, and L. Lebrun, Preparation of graphene nanoflakes/polymer composites and their performances for actuation and energy harvesting applications, J. Appl. Phys. 111 (10) (2012), pp. 104904. doi:10.1063/1.4718577
  • F.R. Carpi, D.D., Improvement of electromechanical actuating performances of a silicone dielectric elastomer by dispersion of titanium dioxide powder. Dielectrics and Electrical Insulation, IEEE Trans. 12 (2005), pp. 835–843.
  • L. Gu, T. Wang, W. Zhang, G. Liang, A. Gu, and L. Yuan, Low-cost and facile fabrication of titanium dioxide coated oxidized titanium diboride–epoxy resin composites with high dielectric constant and extremely low dielectric loss, RSC Adv. 3 (19) (2013), pp. 7071. doi:10.1039/c3ra23239e
  • X. Li, A. Umar, Z. Chen, T. Tian, S. Wang, and Y. Wang, Supramolecular fabrication of polyelectrolyte-modified reduced graphene oxide for NO2 sensing applications, Ceram. Int. 41 (9) (2015), pp. 12130–12136. doi:10.1016/j.ceramint.2015.06.030
  • M. Tian, B. Yan, Y. Yao, L. Zhang, T. Nishi, and N. Ning, Largely improved actuation strain at low electric field of dielectric elastomer by combining disrupting hydrogen bonds with ionic conductivity, J. Mater. Chem. C 2 (39) (2014), pp. 8388–8397. doi:10.1039/C4TC01140F
  • C. Racles, M. Cazacu, B. Fischer, and D.M. Opris, Synthesis and characterization of silicones containing cyanopropyl groups and their use in dielectric elastomer actuators, Smart Mater. Struct. 22 (10) (2013), pp. 104004. doi:10.1088/0964-1726/22/10/104004
  • I. Calizo, A.A. Balandin, W. Bao, F. Miao, and C.N. Lau, Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers, Nano Lett. 7 (9) (2007), pp. 2645–2649. doi:10.1021/nl071033g
  • S. Coh, L.Z. Tan, S.G. Louie, and M.L. Cohen, Theory of the Raman spectrum of rotated double-layer graphene, Phys. Rev. B. 88 (16) (2013). doi:10.1103/PhysRevB.88.165431
  • K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457 (7230) (2009), pp. 706–710. doi:10.1038/nature07719
  • C. Wu, X. Huang, G. Wang, X. Wu, K. Yang, S. Li, and P. Jiang, Hyperbranched-polymer functionalization of graphene sheets for enhanced mechanical and dielectric properties of polyurethane composites, J. Mater. Chem. 22 (14) (2012), pp. 7010–7019. doi:10.1039/c2jm16901k
  • X. Huang, P. Jiang, and L. Xie, Ferroelectric polymer/silver nanocomposites with high dielectric constant and high thermal conductivity, Appl. Phys. Lett. 95 (24) (2009), pp. 242901. doi:10.1063/1.3273368
  • Z.-M. Dang, L. Wang, Y. Yin, Q. Zhang, and -Q.-Q. Lei, Giant Dielectric Permittivities in Functionalized Carbon-Nanotube/ Electroactive-Polymer Nanocomposites, Adv. Mater. 19 (6) (2007), pp. 852–857. doi:10.1002/(ISSN)1521-4095
  • F. Carpi, G. Gallone, F. Galantini, and D. De Rossi, Silicone–Poly(hexylthiophene) Blends as Elastomers with Enhanced Electromechanical Transduction Properties, Adv. Funct. Mater. 18 (2) (2008), pp. 235–241. doi:10.1002/(ISSN)1616-3028
  • G. Gallone, F. Carpi, D. De Rossi, G. Levita, and A. Marchetti, Dielectric constant enhancement in a silicone elastomer filled with lead magnesium niobate–lead titanate, Mater. Sci. Engineering: C 27 (1) (2007), pp. 110–116. doi:10.1016/j.msec.2006.03.003
  • B. Kussmaul, S. Risse, G. Kofod, R. Waché, M. Wegener, D.N. McCarthy, H. Krüger, and R. Gerhard, Enhancement Of Dielectric Permittivity And Electromechanical Response In Silicone Elastomers: Molecular Grafting Of Organic Dipoles To The Macromolecular Network, Adv. Funct. Mater. 21 (23) (2011), pp. 4589–4594. doi:10.1002/adfm.v21.23
  • L. Jiang, A. Betts, D. Kennedy, and S. Jerrams, The fabrication of dielectric elastomers from silicone rubber and barium titanate: Employing equi-biaxial pre-stretch to achieve large deformations, J. Mater. Sci. 50 (24) (2015), pp. 7930–7938. doi:10.1007/s10853-015-9357-6