1,474
Views
43
CrossRef citations to date
0
Altmetric
Original Articles

Temperature distribution effects on buckling behavior of smart heterogeneous nanosize plates based on nonlocal four-variable refined plate theory

&
Pages 119-143 | Received 21 Jun 2016, Accepted 08 Aug 2016, Published online: 20 Aug 2016

References

  • C.P. Wu and Y.C. Lu, A modified Pagano method for the 3D dynamic responses of functionally graded magneto-electro-elastic plates, Compos. Struct. 90 (3) (2009), pp. 363–372. doi:10.1016/j.compstruct.2009.03.022
  • E. Pan and P.R. Heyliger, Free vibrations of simply supported and multilayered magneto-electro-elastic plates, J. Sound Vib. 252 (3) (2002), pp. 429–442. doi:10.1006/jsvi.2001.3693
  • F. Ramirez, P.R. Heyliger, and E. Pan, Discrete layer solution to free vibrations of functionally graded magneto-electro-elastic plates, Mech. Adv. Mater. Struct. 13 (3) (2006), pp. 249–266. doi:10.1080/15376490600582750
  • A.C. Eringen and D.G.B. Edelen, On nonlocal elasticity, Int. J. Eng. Sci. 10 (3) (1972), pp. 233–248. doi:10.1016/0020-7225(72)90039-0
  • A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys. 54 (9) (1983), pp. 4703–4710. doi:10.1063/1.332803
  • L.L. Ke and Y.S. Wang, Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory, Physica E: Low-dimen. Syst. Nanostruct. 63 (2014), pp. 52–61. doi:10.1016/j.physe.2014.05.002
  • L.L. Ke, Y.S. Wang, J. Yang, and S. Kitipornchai, Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory, Acta Mech. Sinica 30 (4) (2014), pp. 516–525. doi:10.1007/s10409-014-0072-3
  • Y.S. Li, Z.Y. Cai, and S.Y. Shi, Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory, Compos. Struct. 111 (2014), pp. 522–529. doi:10.1016/j.compstruct.2014.01.033
  • Y.S. Li, P. Ma, and W. Wang, Bending, buckling, and free vibration of magnetoelectroelastic nanobeam based on nonlocal theory, J. Intell. Mater. Syst. Struct. 27(2015), pp. 1045389X15585899.
  • A. Farajpour, M.R. Yazdi, A. Rastgoo, M. Loghmani, and M. Mohammadi, Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates, Compos. Struct. 140 (2016), pp. 323–336. doi:10.1016/j.compstruct.2015.12.039
  • S. Natarajan, S. Chakraborty, M. Thangavel, S. Bordas, and T. Rabczuk, Size-dependent free flexural vibration behavior of functionally graded nanoplates, Comput. Mater. Sci. 65 (2012), pp. 74–80. doi:10.1016/j.commatsci.2012.06.031
  • M. Filippi, E. Carrera, and A.M. Zenkour, Static analyses of FGM beams by various theories and finite elements, Compos. Part B: Eng. 72 (2015), pp. 1–9. doi:10.1016/j.compositesb.2014.12.004
  • A. Pagani, A.G. De Miguel, M. Petrolo, and E. Carrera, Analysis of laminated beams via Unified Formulation and Legendre polynomial expansions, Compos. Struct. (2016). doi:10.1016/j.compstruct.2016.01.095
  • M. Filippi, A. Pagani, M. Petrolo, G. Colonna, and E. Carrera, Static and free vibration analysis of laminated beams by refined theory based on Chebyshev polynomials, Compos. Struct. 132 (2015), pp. 1248–1259. doi:10.1016/j.compstruct.2015.07.014
  • I.A. Ramos, J.L. Mantari, A. Pagani, and E. Carrera, Refined theories based on non-polynomial kinematics for the thermoelastic analysis of functionally graded plates, J. Therm. Stresses 39 (7) (2016), pp. 835–853. doi:10.1080/01495739.2016.1189771
  • E. Carrera, A. Pagani, and J.R. Banerjee, Linearized buckling analysis of isotropic and composite beam-columns by Carrera Unified Formulation and dynamic stiffness method, Mech. Adv. Mater. Struct. 23 (9) (2016), pp. 1092–1103. doi:10.1080/15376494.2015.1121524
  • M. Filippi, M. Petrolo, S. Valvano, and E. Carrera, Analysis of laminated composites and sandwich structures by trigonometric, exponential and miscellaneous polynomials and a MITC9 plate element, Compos. Struct. 150 (2016), pp. 103–114. doi:10.1016/j.compstruct.2015.12.038
  • J.L. Mantari, I.A. Ramos, E. Carrera, and M. Petrolo, Static analysis of functionally graded plates using new non-polynomial displacement fields via Carrera Unified Formulation, Compos. Part B: Eng. 89 (2016), pp. 127–142. doi:10.1016/j.compositesb.2015.11.025
  • I. Belkorissat, M.S.A. Houari, A. Tounsi, E.A. Bedia, and S.R. Mahmoud, On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model, Steel Compos. Struct. 18 (4) (2015), pp. 1063–1081. doi:10.12989/scs.2015.18.4.1063
  • R. Ansari, A. Shahabodini, and M.F. Shojaei, Nonlocal three-dimensional theory of elasticity with application to free vibration of functionally graded nanoplates on elastic foundations, Physica E: Low-dimen. Syst. Nanostruct. 76 (2016), pp. 70–81. doi:10.1016/j.physe.2015.09.042
  • M.R. Barati, A.M. Zenkour, and H. Shahverdi, Thermo-mechanical buckling analysis of embedded nanosize FG plates in thermal environments via an inverse cotangential theory, Compos. Struct. 141 (2016), pp. 203–212. doi:10.1016/j.compstruct.2016.01.056
  • F. Ebrahimi and E. Salari, Size-dependent thermo-electrical buckling analysis of functionally graded piezoelectric nanobeams, Smart Mater. Struct. 24 (12) (2015), pp. 125007. doi:10.1088/0964-1726/24/12/125007
  • S. Narendar, Wave dispersion in functionally graded magneto-electro-elastic nonlocal rod, Aerosp. Sci. Technol. 51 (2016), pp. 42–51. doi:10.1016/j.ast.2016.01.012
  • F. Ebrahimi and M.R. Barati, Buckling analysis of smart size-dependent higher order magneto-electro-thermo-elastic functionally graded nanosize beams, J. Mech. (2016), pp. 1–11.
  • F. Ebrahimi and M.R. Barati, Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment, J. Vib. Control (2016), pp. 1077546316646239.
  • F. Ebrahimi and M.R. Barati, Magnetic field effects on buckling behavior of smart size-dependent graded nanoscale beams, Eur. Phys. J. Plus 131 (7) (2016), pp. 1–14. doi:10.1140/epjp/i2016-16238-8
  • F. Ebrahimi and M.R. Barati, Dynamic modeling of a thermo–piezo-electrically actuated nanosize beam subjected to a magnetic field, Appl. Phys. A 122 (4) (2016), pp. 1–18.
  • M.R. Barati and H. Shahverdi. An analytical solution for thermal vibration of compositionally graded nanoplates with arbitrary boundary conditions based on physical neutral surface position. Mech. Adv. Mater. Struct. (2016): 1–47. doi:10.1080/15376494.2016.1196788
  • J.L. Mantari, E.M. Bonilla, and C.G. Soares, A new tangential-exponential higher order shear deformation theory for advanced composite plates, Compos. Part B: Eng. 60 (2014), pp. 319–328. doi:10.1016/j.compositesb.2013.12.001
  • F. Ebrahimi and M.R. Barati, A nonlocal higher-order shear deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams, Arabian J. Sci. Eng. 41 (5) (2016), pp. 1679–1690. doi:10.1007/s13369-015-1930-4
  • M. Sobhy, A comprehensive study on FGM nanoplates embedded in an elastic medium, Compos. Struct. 134 (2015), pp. 966–980. doi:10.1016/j.compstruct.2015.08.102
  • R. Ansari, E. Hasrati, R. Gholami, and F. Sadeghi, Nonlinear analysis of forced vibration of nonlocal third-order shear deformable beam model of magneto–electro–thermo elastic nanobeams, Compos. Part B: Eng. 83 (2015), pp. 226–241. doi:10.1016/j.compositesb.2015.08.038
  • R. Ansari, M.F. Shojaei, A. Shahabodini, and M. Bazdid-Vahdati, Three-dimensional bending and vibration analysis of functionally graded nanoplates by a novel differential quadrature-based approach, Compos. Struct. 131 (2015), pp. 753–764. doi:10.1016/j.compstruct.2015.06.027