5,249
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Work conjugate pair of stress and strain in molecular dynamics

, &
Pages 144-178 | Received 08 Aug 2016, Accepted 02 Sep 2016, Published online: 10 Oct 2016

References

  • A.C. Eringen, Mechanics of Continua, American Institute of Physics, New York, 1980.
  • J.E. Fitzgerald, A tensorial Hencky measure of strain and strain rate for finite deformations, J. Appl. Phys. 51 (1980), pp. 5111–5115. doi:10.1063/1.327428
  • H. Xiao, O.T. Bruhns, and A. Meyers, A natural generalization of hypoelasticity and Eulerian rate type formulation of hyperelasticity, J. Elast. 56 (1999), pp. 59–93. doi:10.1023/A:1007677619913
  • H. Xiao and L.S. Chen, Hencky’s elasticity model and linear stress-strain relations in isotropic finite hyperelasticity, Acta Mech. 157 (2002), pp. 51–60. doi:10.1007/BF01182154
  • M.J. Buehler and H. Gao, Modeling dynamic fracture using large-scale atomistic simulations, in Dynamic Fracture Mechanics, A. Shukla, ed., World Scientific, Singapore, 2006, pp. 1–68.
  • Z. Zhang, X. Wang, and J.D. Lee, An atomistic methodology of energy release rate for graphene at nanoscale, J. Appl. Phys. 115 (2014), pp. 114314. doi:10.1063/1.4869207
  • J. Li and J.D. Lee, Reformulation of the Nosé–Hoover thermostat for heat conduction simulation at nanoscale, Acta Mech. 225 (2014), pp. 1223–1233. doi:10.1007/s00707-013-1046-4
  • S. Shen and S.N. Atluri, Atomic-level stress calculation and continuum-molecular system equivalence, Comput. Model. Eng. Sci.. 6 (2004), pp. 91–104.
  • R.J. Hardy, Formulas for determining local properties in molecular-dynamics simulations: Shock waves, J. Chem. Phys. 76 (1982), pp. 622–628. doi:10.1063/1.442714
  • J.A. Zimmerman, E.B. WebbIII, J.J. Hoyt, R.E. Jones, P.A. Klein, and D.J. Bammann, Calculation of stress in atomistic simulation, Model. Simul. Mater. Sci. Eng. 12 (2004), pp. S319–S332. doi:10.1088/0965-0393/12/4/S03
  • F. Costanzo, G.L. Gray, and P.C. Andia, On the notion of average mechanical properties in MD simulation via homogenization, Model. Simul. Mater. Sci. Eng. 12 (2004), pp. S333–S345. doi:10.1088/0965-0393/12/4/S04
  • P.M. Gullett, M.F. Horstemeyer, M.I. Baskes, and H. Fang, A deformation gradient tensor and strain tensors for atomistic simulations, Model. Simul. Mater. Sci. Eng. 16 (2008), pp. 15001. doi:10.1088/0965-0393/16/1/015001
  • D.H. Tsai, The virial theorem and stress calculation in molecular dynamics, J. Chem. Phys. 70 (1979), pp. 1375–1382. doi:10.1063/1.437577
  • K.S. Cheung and S. Yip, Atomic-level stress in an inhomogeneous system, J. Appl. Phys. 70 (1991), pp. 5688–5690. doi:10.1063/1.350186
  • M. Zhou, A new look at the atomic level virial stress: On continuum-molecular system equivalence, Proc. R. Soc. Math. Phys. Eng. Sci. 459 (2003), pp. 2347–2392. doi:10.1098/rspa.2003.1127
  • J. Cormier, J.M. Rickman, and T.J. Delph, Stress calculation in atomistic simulations of perfect and imperfect solids, J. Appl. Phys. 89 (2001), pp. 99–104. doi:10.1063/1.1328406
  • R. Clausius, On a mechanical theorem applicable to heat, Philos. Mag. Ser. 40 (4) (1870), pp. 122–127.
  • L. Wang, J. Li, and J.D. Lee, Work conjugate strain of virial stress, Int. J. Smart Nano Mater. 7 (2016), pp. 39–51. doi:10.1080/19475411.2016.1162218
  • J.L. Ericksen, On the Cauchy—Born rule, Math. Mech. Solids 13 (2008), pp. 199–220. doi:10.1177/1081286507086898
  • M. Arroyo and T. Belytschko, An atomistic-based finite deformation membrane for single layer crystalline films, J. Mech. Phys. Solids 50 (2002), pp. 1941–1977. doi:10.1016/S0022-5096(02)00002-9
  • H.S. Park, P.A. Klein, and G.J. Wagner, A surface Cauchy–Born model for nanoscale materials, Int. J. Numer. Methods Eng. 68 (2006), pp. 1072–1095. doi:10.1002/nme.1754
  • A. Kumar, S. Kumar, and P. Gupta, A Helical Cauchy-Born rule for special cosserat rod modeling of nano and continuum rods, J. Elast. 124 (2016), pp. 81–106. doi:10.1007/s10659-015-9562-1
  • I.-S. Liu, Continuum Mechanics, Springer Berlin Heidelberg, New York, 2002.
  • A.I. Murdoch, Physical Foundations of Continuum Mechanics, Cambridge University Press, Cambridge, 2012.
  • S.-L. Xue, B. Li, X.-Q. Feng, and H. Gao, Biochemomechanical poroelastic theory of avascular tumor growth, J. Mech. Phys. Solids 94 (2016), pp. 409–432. doi:10.1016/j.jmps.2016.05.011
  • Y.C. Fung and P. Tong, Classical and Computational Solid Mechanics, Vol. 1, World Scientific Publishing Company, Singapore, 2001.
  • S. Nair, Introduction to Continuum Mechanics, Cambridge University Press, Cambridge, 2009.
  • J. Tersoff, Empirical interatomic potential for carbon, with applications to amorphous carbon, Phys. Rev. Lett. 61 (1988), pp. 2879–2882. doi:10.1103/PhysRevLett.61.2879
  • L. Lindsay and D.A. Broido, Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene, Phys. Rev. B 81 (2010), pp. 205441. doi:10.1103/PhysRevB.81.205441
  • H. Balamane, T. Halicioglu, and W.A. Tiller, Comparative study of silicon empirical interatomic potentials, Phys. Rev. B 46 (1992), pp. 2250–2279. doi:10.1103/PhysRevB.46.2250
  • I.-S. Liu, On the transformation property of the deformation gradient under a change of frame, J. Elast. 71 (2003), pp. 73–80. doi:10.1023/B:ELAS.0000005548.36767.e7
  • I.-S. Liu, Further remarks on Euclidean objectivity and the principle of material frame-indifference, Contin. Mech. Thermodyn. 17 (2005), pp. 125–133. doi:10.1007/s00161-004-0191-3
  • A.I. Murdoch, On objectivity and material symmetry for simple elastic solids, J. Elast. Phys. Sci. Solids. 60 (2000), pp. 233–242. doi:10.1023/A:1011049615372
  • Polar Decomposition. Available at http://www.continuummechanics.org/polardecomposition.html. (Accessed 16 June 2016).